K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2017

\(A=2+2^2+2^3+2^4+.......+2^{99}+2^{100}\)

\(\Rightarrow A=\left(2+2^2+2^3+2^4+2^5\right)+.......+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(\Rightarrow1.\left(2+2^2+2^3+2^4+2^5\right)+.......+1.\left(2+2^2+2^3+2^4+2^5\right)\)

\(\Rightarrow1.62+......+1.62\)

Mà 62 \(⋮\)31 => A \(⋮\)31

A=12.34.56...99100

⇒A<23.45.67...100101

⇒A2<23.45.67...100101.12.34.56...99100

⇒A2<1101<1100=1102

A=12.34.56...99100

⇒A<23.45.67...100101

⇒A2<23.45.67...100101.12.34.56...99100

⇒A2<1101<1100=1102

18 tháng 11 2018


 

\(A=\left(2+2^2\right)+...+\left(2^{99}+2^{100}\right)\)

\(A=2\cdot\left(1+2\right)+...+2^{99}\cdot\left(1+2\right)\)

\(A=2\cdot3+...+2^{99}\cdot3\)

\(A=3\cdot\left(2+...+2^{99}\right)⋮3\left(đpcm\right)\)

2 ý kia tương tự

18 tháng 11 2018

Giải:

Đặt S=(2+2^2+2^3+...+2^100)

=2.(1+2+2^2+2^3+2^4)+2^6.(1+2+2^2+2^3+2^4)+...+(1+2+2^2+2^3+2^4).296

=2.31+26.31+...+296.31

=31.(2+26+...+296)\(⋮\)31

1 tháng 11 2021

\(2+2^2+...+2^{100}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ =2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\\ =\left(1+2\right)\left(2+2^3+...+2^{99}\right)\\ =3\left(2+2^3+...+2^{99}\right)⋮3\)

1 tháng 11 2021

Mk đang hỏi tại sao lại có phần (1+2) mà bạn. Bạn biết thì chỉ mk với

6 tháng 1 2023

ta có :

`1^3` \(⋮\) `1`

\(2^3⋮2\)

\(3^3⋮3\)

.................

\(100^3⋮100\)

`=>` \(1^3+2^3+3^3+...+100^3⋮1+2+3+...+100\)

vậy `A` \(⋮\)`B`

27 tháng 11 2017

giúp mk ik

10 tháng 11 2016

A=(2^1+2^2+2^3)+...(2^58+2^59+2^60)(20nhóm)

đật số đầu tiên của mỗi nhóm làm thừa số chungbên trong của mỗi nhóm còn lại 1+2+4=7

đặt 7 lammf thừa số chung bên trg còn (2^1+...+2^58)

Achia hết cho7

câu b làm tương tự  nhưng nhóm 4 số 

câu c nhóm 4 số nhưng lấy số đầu của mỗi nhóm chia 2 dể làm thừa số chung

24 tháng 12 2022

Phương pháp giải dạng tống quát : 

Muốn chứng minh A \(⋮̸\) b  ta cần biến đổi A = kb + r ( k \(\in\) Z; r \(⋮̸\) b)

Áp dụng :

A =  1 + 2  + 22 + 23 +....+299

A =  1 + ( 2+22 + 23 ) + .....+ ( 297 + 298 + 299)

A = 1 + 14 +.......+ 296.( 2 + 22 + 23)

A = 1 + 14. ( 20 +....+296)

vì 14 \(⋮\) 7  => 14.( 20 +.....+296\(⋮\) 7

                                             1  \(⋮̸\) 7

Cộng vế với vế ta được : 1 + 14.(20 + ....296\(⋮̸\) 7

Hay A = 1 + 2 + 22 + 23 + 24 +......299 \(⋮̸\) 7 (đpcm)

24 tháng 8 2020

1) C = 5 + 52 + 53 + 54 + ... + 520  

       = (5 + 52) + (53 + 54) + ... +(519 + 520)

       = (5 + 52) + 52(5 + 52) + .... + 518(5 + 52

       = (5 + 52)(1 + 52 + ... + 518)

       = 26(1 + 52 + ... + 518)

        = 13.2.(1 + 52 + ... + 518\(⋮\)13 (ĐPCM)

2) a) A = 24 + 25 + 26 + 27 + 28 + 29 

           = (24 + 25) + (26 + 27) + (28 + 29)

           = 24(1 + 2) + 26(1 + 2) + 28(1 + 2)

           = (1 + 2)(24 + 26 + 28)

           = 3(24 + 26 + 28\(⋮3\)

b) B = 317 + 318 + 319 + 320 + 321 + 322 

      = (317 + 318 + 319) + (320) + 321 + 322

      = 317(1 + 3 + 32) + 320(1 + 3 + 32)

      = (1 + 3 + 32)(317 + 320)

      = 13(317 + 320\(⋮\)13

24 tháng 8 2020

Bài 1:

C = 5+5+53+.....+520

=(5+52+53+54)+.....+(517+518+519+520)

=5.(1+5+52+53)+.....+517(1+5+52+53)

=5.156+....+517.156

=156.(5+...+517)=13.12.(5+....+517) chia hết cho 13

Bài 2:

A=24+25+26+27+28+29

=(24+25)+(26+27)+(28+29)

=24(1+2)+26(1+2)+28(1+2)

=24.3+26.3+28.3

=3.(24+26+28) chia hết cho 3 

b)

B=317+318+319+320+321+322

=(317+318+319)+(320+321+322)

=317(1+3+32)+320(1+3+32)

=317.13+320.13

=13.(317+320)chia hết cho 13

#CừU