Tìm một số có ba chữ số, biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với 1, 2, 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án:396 hoặc 936
Giải thích các bước giải:
Gọi chữ số nhỏ nhất là x
=> Ba chữ số theo tỉ lệ là: x, 2x, 3x với 3x ≤ 9
=> x ≤ 3 (1)
Vì số cần tìm chia hết cho 18, nghĩa là chia hết cho 9
Nên (x + 2x + 3x) = 6x chia hết cho 9
=> x chia hết cho 3 (2)
Từ (1) & (2), suy ra: x = 3
=> Ba chữ số là 3, 6, 9
Theo đề bài số cần tìm chia hết cho 18 (18 là số chẵn), nghĩa là chia hết cho 2, vậy chữ số cuối phải là 6
=> Số cần tìm là 396 hoặc 936
Gọi chữ số nhỏ nhất là x
=> Ba chữ số theo tỉ lệ là: x, 2x, 3x với 3x ≤ 9
=> x ≤ 3 (1)
Vì số cần tìm chia hết cho 18, nghĩa là chia hết cho 9
Nên (x + 2x + 3x) = 6x chia hết cho 9
=> x chia hết cho 3 (2)
Từ (1) & (2), suy ra: x = 3
=> Ba chữ số là 3, 6, 9
Theo đề bài số cần tìm chia hết cho 18 (18 là số chẵn), nghĩa là chia hết cho 2, vậy chữ số cuối phải là 6
=> Số cần tìm là 396 hoặc 936
Giải
Gọi số đó có dạng abc (Số có 3 chữ số)
Vì abc \(⋮\) 18 \(\Rightarrow\) abc \(⋮\) 9 \(\Rightarrow\left(a+b+c\right)⋮9\)
Mà 1 ≤ a + b + c ≤ 27 (Do a, b, c nhận các giá trị tự nhiện từ 1 đến 9)
\(\Rightarrow\) a + b + c nhận một trong ba số: 9; 18; 27 ( 1 )
Mà a1 = b2 = c3 = a + b + c6 ( 2 )
Từ (*) và (**) ta có (a + b + c) =18 (Chia hết cho 6)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{18}{6}=3\)
\(\Rightarrow\hept{\begin{cases}a=3\\b=6\\c=9\end{cases}}\)
Nhưng vì số đó chia hết cho 18 nên chữ số hàng đơn vị là 6
Vậy ta có 2 đáp số thỏa mãn: 396 và 936
Gọi chữ số nhỏ nhất là a => số có 3 chữ số là a, 2a, 3a với 3a ≤ 9 => a ≤ 3. Do số cần tìm chia hết cho 18, tức chia hết cho 9 nên (a + 2a + 3a) = 6a chia hết cho 9 => a chia hết cho 3, vậy a = 3 => 3 chữ số là 3, 6, 9
Số cần tìm là số chẵn do chia hết cho 2 vậy chữ số cuối là 6
=> số cần tìm là 396 hoặc 936
Gọi chữ số nhỏ nhất là a => số có 3 chữ số là a, 2a, 3a với 3a ≤ 9 => a ≤ 3. Do số cần tìm chia hết cho 18, tức chia hết cho 9 nên (a + 2a + 3a) = 6a chia hết cho 9 => a chia hết cho 3, vậy a = 3 => 3 chữ số là 3, 6, 9
Số cần tìm là số chẵn do chia hết cho 2 vậy chữ số cuối là 6
=> số cần tìm là 396 hoặc 936
Gọi chữ số nhỏ nhất là a => số có 3 chữ số là a, 2a, 3a với 3a ≤ 9 => a ≤ 3. Do số cần tìm chia hết cho 18, tức chia hết cho 9 nên (a + 2a + 3a) = 6a chia hết cho 9 => a chia hết cho 3, vậy a = 3 => 3 chữ số là 3, 6, 9
Số cần tìm là số chẵn do chia hết cho 2 vậy chữ số cuối là 6
=> số cần tìm là 396 hoặc 936
Số đó chia hết cho 18 => chia hết cho 2 và 9
=> số đó có tận cùng là chữ số chẵn và có tổng các chữ số chia hết cho 9
Chữ số tận cùng chẵn nên chỉ có thể lớn nhất bằng 8; mỗi chữ số còn lại lớn nhất = 9
=> Tổng các 3 chữ số lớn nhất = 9+ 9 + 8 = 26
Tổng các chữ số chia hết cho 9 => chỉ có thể = 9 hoặc 18
Gọi 3 chữ số đó là a; b ; c và \(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\)
+) Nếu a+ b + c = 9.
ta có: \(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{9}{6}=\frac{3}{2}\)=> a = 3/2 loại
+) Vậy a + b + c = 18
=> \(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{18}{6}=3\)
=> a = 3.1 =3
b = 2.3 =6; c = 3.3 = 9
Vì chữ số tận cùng chẵn nên số cần tìm là 396 hoặc 936
gọi số có 3 chữ số là \(\overline{xyz}\)
ĐK: 1\(\le\)x+y+z \(\le\)27
vì \(\overline{xyz}\)\(⋮\)18 => \(\overline{xyz}\)\(⋮\)9
=>\(\hept{\begin{cases}x+y+z=9\\x+y+z=18\\x+y+z=27\end{cases}}\)
mặt khác \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)=\(\frac{x+y+z}{1+2+3}=\frac{18}{6}\)=3
=> x= 3; y = 6; z = 9
vì \(\overline{xyz}\)\(⋮\)18 nên suy ra\(\overline{xyz}\)\(⋮\)2
vậy số có 3 chữ số cần tìm là 396, 936
Gọi chữ số nhỏ nhất là x
=> Ba chữ số theo tỉ lệ là: x, 2x, 3x với 3x ≤ 9
=> x ≤ 3 (1)
Vì số cần tìm chia hết cho 18, nghĩa là chia hết cho 9
Nên (x + 2x + 3x) = 6x chia hết cho 9
=> x chia hết cho 3 (2)
Từ (1) & (2), suy ra: x = 3
=> Ba chữ số là 3, 6, 9
Theo đề bài số cần tìm chia hết cho 18 (18 là số chẵn), nghĩa là chia hết cho 2, vậy chữ số cuối phải là 6
=> Số cần tìm là 396 hoặc 936