Cho tam giác ABC vuông tại A,trung tuyến AM,đường cao AH,phân giác AD.Chứng minh D nằm giữa H và M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC và AED có: AB = AE ; góc BAC = EAD (= 90o); AC = AD
=> tam giác ABC = AED (c - g - c)
b) Trong tam giác vuông AHB có: góc HBA + A2 = 90o
mà góc A1 + A2 = 90o
=> góc A1 = góc HBA mà góc HBA = DEA (tam giác ABC = AED)
=> góc A1 = góc DEA => tam giác MEA cân tại M => ME = MA (1)
Tương tư, trong tam giác vuông AHC có: A2 + HCA = 90o
mà A2 + A1 = 90o
=> góc HCA = A1 mà góc HCA = MDA ( do tam giác ABC = AED)
=> góc A1 = góc MDA => tam giác MAD cân tại M => MA = MD (2)
Từ (1)(2) => ME = MD => M là trung điểm của DE => AM là trung tuyến của tam giác ADE
a, Vì \(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\) nên AEHD là hcn
Do đó AH=DE
b, Vì \(\widehat{HAB}=\widehat{MCA}\) (cùng phụ \(\widehat{CAH}\))
Mà \(\widehat{MCA}=\widehat{MAC}\) (do \(AM=CM=\dfrac{1}{2}BC\) theo tc trung tuyến ứng ch)
Vậy \(\widehat{HAB}=\widehat{MAC}\)
c, Gọi O là giao AM và DE
Vì AEHD là hcn nên \(\widehat{HAB}=\widehat{ADE}\Rightarrow\widehat{MAC}=\widehat{ADE}\)
Mà \(\widehat{ADE}+\widehat{AED}=90^0\left(\Delta AED\perp A\right)\) nên \(\widehat{MAC}+\widehat{ADE}=90^0\)
Xét tam giác AOE có \(\widehat{AOE}=180^0-\left(\widehat{MAC}+\widehat{ADE}\right)=90^0\)
Vậy AM⊥DE tại O
a) Sửa đề: \(AH^2=BH\cdot CH\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=BH\cdot CH\)(đpcm)