K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

Ai đó lm ơn hãy giúp minh đi mà

6 tháng 5 2015

A C E D B H M 1 2 1 1

a) Xét tam giác ABC và AED có: AB = AE ; góc BAC = EAD (= 90o); AC = AD

=> tam giác ABC = AED (c - g - c)

b) Trong tam giác vuông AHB có: góc HBA + A2 = 90o

mà góc A1 + A2 = 90o

=> góc A1 = góc HBA mà góc HBA = DEA (tam giác ABC = AED)

=> góc A1 = góc DEA => tam giác MEA cân tại M => ME = MA (1)

Tương tư, trong tam giác vuông AHC có: A2 + HCA = 90o

mà A2 + A1 = 90o 

=> góc HCA = A1 mà góc HCA = MDA ( do tam giác ABC = AED)

=> góc A1 = góc MDA => tam giác MAD cân tại M => MA = MD  (2)

Từ (1)(2) => ME = MD => M là trung điểm của DE => AM là trung tuyến của tam giác ADE

10 tháng 11 2021

a, Vì \(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\) nên AEHD là hcn

Do đó AH=DE

b, Vì \(\widehat{HAB}=\widehat{MCA}\) (cùng phụ \(\widehat{CAH}\))

Mà \(\widehat{MCA}=\widehat{MAC}\) (do \(AM=CM=\dfrac{1}{2}BC\) theo tc trung tuyến ứng ch)

Vậy \(\widehat{HAB}=\widehat{MAC}\)

c, Gọi O là giao AM và DE

Vì AEHD là hcn nên \(\widehat{HAB}=\widehat{ADE}\Rightarrow\widehat{MAC}=\widehat{ADE}\)

Mà \(\widehat{ADE}+\widehat{AED}=90^0\left(\Delta AED\perp A\right)\) nên \(\widehat{MAC}+\widehat{ADE}=90^0\)

Xét tam giác AOE có \(\widehat{AOE}=180^0-\left(\widehat{MAC}+\widehat{ADE}\right)=90^0\)

Vậy AM⊥DE tại O

a) Sửa đề: \(AH^2=BH\cdot CH\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=BH\cdot CH\)(đpcm)