Cho $x, \, y$ là hai số dương có tổng bằng $1$. Chứng minh rằng $\Big(1+\dfrac{1}{x}\Big)\Big(1+\dfrac{1}{y}\Big) \ge 9$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x + 2/5 = -4/3
x = -4/3 - 2/5
x = -26/15
b) -5/6 + 1/3 x = (-1/2)²
-5/6 + 1/3 x = 1/4
1/3 x = 1/4 + 5/6
1/3 x = 13/12
x = 13/12 : 1/3
x = 13/4
c) 7/12 - (x + 7/6) . 6/5 = (-1/2)³
7/12 - (x + 7/6) . 6/5 = -1/8
(x + 7/6) . 6/5 = 7/12 + 1/8
(x + 7/6) . 6/5 = 17/24
x + 7/6 = 17/24 : 6/5
x + 7/6 = 85/144
x = 85/144 - 7/6
x = -83/144
\(a,x+\dfrac{2}{5}=-\dfrac{4}{3}\\ \Rightarrow x=-\dfrac{26}{15}\\ b,-\dfrac{5}{6}+\dfrac{1}{3}x=\left(-\dfrac{1}{2}\right)^2\\ \Rightarrow-\dfrac{5}{6}+\dfrac{1}{3}x=\dfrac{1}{4}\\ \Rightarrow\dfrac{1}{3}x=\dfrac{13}{12}\\ \Rightarrow x=\dfrac{13}{4}\\ c,\dfrac{7}{12}-\left(x+\dfrac{7}{6}\right).\dfrac{6}{5}=\left(-\dfrac{1}{2}\right)^3\\ \Rightarrow\dfrac{7}{12}-\left(x+\dfrac{7}{6}\right).\dfrac{6}{5}=-\dfrac{1}{8}\\ \Rightarrow\left(x+\dfrac{7}{6}\right).\dfrac{6}{5}=\dfrac{17}{24}\\ \Rightarrow x+\dfrac{7}{6}=\dfrac{85}{144}\\ \Rightarrow x=-\dfrac{83}{144}.\)
a) \(\dfrac{4}{9}+\dfrac{1}{4}=\dfrac{25}{36}\)
b) \(\dfrac{1}{3}\cdot\left(-\dfrac{4}{5}\right)+\dfrac{1}{3}\cdot\left(-\dfrac{1}{5}\right)=\dfrac{1}{3}\cdot\left(-\dfrac{4}{5}-\dfrac{1}{5}\right)=\dfrac{1}{3}\cdot-1=-\dfrac{1}{3}\)
c) \(\dfrac{1}{5}-\left[\dfrac{1}{4}-\left(1-\dfrac{1}{2}\right)^2\right]=\dfrac{1}{5}-\left[\dfrac{1}{4}-\left(\dfrac{1}{2}\right)^2\right]=\dfrac{1}{5}-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)=\dfrac{1}{5}-0=\dfrac{1}{5}\)
`#3107.101107`
`a)`
\(\dfrac{4}{9}+\dfrac{1}{4}=\dfrac{16}{36}+\dfrac{9}{36}=\dfrac{25}{36}\)
`b)`
\(\dfrac{1}{3}\cdot\left(\dfrac{-4}{5}\right)+\dfrac{1}{3}\cdot\left(-\dfrac{1}{5}\right)\)
\(=\dfrac{1}{3}\cdot\left(-\dfrac{4}{5}-\dfrac{1}{5}\right)\)
\(=\dfrac{1}{3}\cdot\left(-1\right)\)
\(=-\dfrac{1}{3}\)
`c)`
\(\dfrac{1}{5}-\left[\dfrac{1}{4}-\left(1-\dfrac{1}{2}\right)^2\right]\)
\(=\dfrac{1}{5}-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)\)
\(=\dfrac{1}{5}-0\)
\(=\dfrac{1}{5}\)
3/4 - (x - 2/3) = 1 1/3
3/4 - x + 2/3 = 4/3
-x = 4/3 - 3/4 - 2/3
-x = -1/12
x = 1/12
3/4 - (x - 2/3) = 1 1/3
3/4 - x + 2/3 = 4/3
-x = 4/3 - 3/4 - 2/3
-x = -1/12
x = 1/12
\(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}=\dfrac{x^4}{xy+2xz}+\dfrac{y^4}{yz+2xy}+\dfrac{z^4}{xz+2yz}\)
\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\)
\(\Rightarrow\dfrac{2}{x}+\dfrac{2}{y}+\dfrac{2}{z}\ge\dfrac{2}{\sqrt{xy}}+\dfrac{2}{\sqrt{yz}}+\dfrac{2}{\sqrt{zx}}\)
\(\Rightarrow\dfrac{2}{x}+\dfrac{2}{y}+\dfrac{2}{z}-\dfrac{2}{\sqrt{xy}}+\dfrac{2}{\sqrt{yz}}+\dfrac{2}{\sqrt{zx}}\ge0\)
\(\Rightarrow\dfrac{1}{x}-\dfrac{2}{\sqrt{xy}}+\dfrac{1}{y}+\dfrac{1}{y}-\dfrac{2}{\sqrt{yz}}+\dfrac{1}{z}+\dfrac{1}{z}-\dfrac{2}{\sqrt{zx}}+\dfrac{1}{x}\ge0\)
\(\Rightarrow\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{y}}\right)^2+\left(\dfrac{1}{\sqrt{y}}-\dfrac{1}{\sqrt{z}}\right)^2+\left(\dfrac{1}{\sqrt{z}}-\dfrac{1}{\sqrt{x}}\right)^2\ge0\) (luôn đúng)
Dấu = xảy ra khi \(x=y=z\)
Sai đề kìa.
Bạn tham khảo: Câu hỏi của Ngoc An Pham - Toán lớp 9 | Học trực tuyến
ta có:
\(\dfrac{x}{1-x^2}+\dfrac{y}{1-y^2}=\dfrac{x-xy^2+y-x^2y}{\left(1-x^2\right)\left(1-y^2\right)}=\dfrac{1-xy}{xy\left(x+1\right)\left(y+1\right)}\)
Áp dụng BĐT cauchy:
\(\left(x+y\right)^2\ge4xy\Leftrightarrow xy\le\dfrac{1}{4}\)
và \(\left(x+1\right)\left(y+1\right)\le\dfrac{1}{4}\left(x+y+2\right)^2=\dfrac{9}{4}\)
do đó \(VT\ge\dfrac{1-\dfrac{1}{4}}{\dfrac{1}{4}.\dfrac{9}{4}}=\dfrac{3}{4}.\dfrac{16}{9}=\dfrac{4}{3}\)
dấu = xảy ra khi x=y=\(\dfrac{1}{2}\)
Ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\) \(\ge\) \(\dfrac{2}{\sqrt{xy}}\) (1)
\(\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{yz}}\) (2)
\(\dfrac{1}{z}+\dfrac{1}{x}\ge\dfrac{2}{\sqrt{xz}}\) (3)
Cộng (1);(2);(3) vế theo vế ta được:
\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge2\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)
=> \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\) (đpcm)
Ta có \(x+y=1\)
\(\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)=\left(1+\dfrac{x+y}{x}\right)\left(1+\dfrac{x+y}{y}\right)=\left(2+\dfrac{y}{x}\right)\left(2+\dfrac{x}{y}\right)\)
\(=5+\dfrac{2x}{y}+\dfrac{2y}{x}=5+2\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
Theo Cosi \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}=2\Rightarrow2\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\ge4\Rightarrow5+2\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\ge9\)
Dấu ''='' xảy ra khi x = y