K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7

Ta có \(x+y=1\)

\(\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)=\left(1+\dfrac{x+y}{x}\right)\left(1+\dfrac{x+y}{y}\right)=\left(2+\dfrac{y}{x}\right)\left(2+\dfrac{x}{y}\right)\)

\(=5+\dfrac{2x}{y}+\dfrac{2y}{x}=5+2\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)

Theo Cosi \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}=2\Rightarrow2\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\ge4\Rightarrow5+2\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\ge9\)

Dấu ''='' xảy ra khi x = y 

30 tháng 10 2023

a) x + 2/5 = -4/3

x = -4/3 - 2/5

x = -26/15

b) -5/6 + 1/3 x = (-1/2)²

-5/6 + 1/3 x = 1/4

1/3 x = 1/4 + 5/6

1/3 x = 13/12

x = 13/12 : 1/3

x = 13/4

c) 7/12 - (x + 7/6) . 6/5 = (-1/2)³

7/12 - (x + 7/6) . 6/5 = -1/8

(x + 7/6) . 6/5 = 7/12 + 1/8

(x + 7/6) . 6/5 = 17/24

x + 7/6 = 17/24 : 6/5

x + 7/6 = 85/144

x = 85/144 - 7/6

x = -83/144

30 tháng 10 2023

\(a,x+\dfrac{2}{5}=-\dfrac{4}{3}\\ \Rightarrow x=-\dfrac{26}{15}\\ b,-\dfrac{5}{6}+\dfrac{1}{3}x=\left(-\dfrac{1}{2}\right)^2\\ \Rightarrow-\dfrac{5}{6}+\dfrac{1}{3}x=\dfrac{1}{4}\\ \Rightarrow\dfrac{1}{3}x=\dfrac{13}{12}\\ \Rightarrow x=\dfrac{13}{4}\\ c,\dfrac{7}{12}-\left(x+\dfrac{7}{6}\right).\dfrac{6}{5}=\left(-\dfrac{1}{2}\right)^3\\ \Rightarrow\dfrac{7}{12}-\left(x+\dfrac{7}{6}\right).\dfrac{6}{5}=-\dfrac{1}{8}\\ \Rightarrow\left(x+\dfrac{7}{6}\right).\dfrac{6}{5}=\dfrac{17}{24}\\ \Rightarrow x+\dfrac{7}{6}=\dfrac{85}{144}\\ \Rightarrow x=-\dfrac{83}{144}.\)

30 tháng 10 2023

a) \(\dfrac{4}{9}+\dfrac{1}{4}=\dfrac{25}{36}\)

b) \(\dfrac{1}{3}\cdot\left(-\dfrac{4}{5}\right)+\dfrac{1}{3}\cdot\left(-\dfrac{1}{5}\right)=\dfrac{1}{3}\cdot\left(-\dfrac{4}{5}-\dfrac{1}{5}\right)=\dfrac{1}{3}\cdot-1=-\dfrac{1}{3}\)

c) \(\dfrac{1}{5}-\left[\dfrac{1}{4}-\left(1-\dfrac{1}{2}\right)^2\right]=\dfrac{1}{5}-\left[\dfrac{1}{4}-\left(\dfrac{1}{2}\right)^2\right]=\dfrac{1}{5}-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)=\dfrac{1}{5}-0=\dfrac{1}{5}\)

`#3107.101107`

`a)`

\(\dfrac{4}{9}+\dfrac{1}{4}=\dfrac{16}{36}+\dfrac{9}{36}=\dfrac{25}{36}\)

`b)`

\(\dfrac{1}{3}\cdot\left(\dfrac{-4}{5}\right)+\dfrac{1}{3}\cdot\left(-\dfrac{1}{5}\right)\)

\(=\dfrac{1}{3}\cdot\left(-\dfrac{4}{5}-\dfrac{1}{5}\right)\)

\(=\dfrac{1}{3}\cdot\left(-1\right)\)

\(=-\dfrac{1}{3}\)

`c)`

\(\dfrac{1}{5}-\left[\dfrac{1}{4}-\left(1-\dfrac{1}{2}\right)^2\right]\)

\(=\dfrac{1}{5}-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)\)

\(=\dfrac{1}{5}-0\)

\(=\dfrac{1}{5}\)

DT
30 tháng 10 2023

loading... 

28 tháng 11 2023

3/4 - (x - 2/3) = 1 1/3

3/4 - x + 2/3 = 4/3

-x = 4/3 - 3/4 - 2/3

-x = -1/12

x = 1/12

28 tháng 11 2023

3/4 - (x - 2/3) = 1 1/3

  3/4 - x + 2/3 = 4/3

         -x = 4/3 - 3/4 - 2/3

         -x = -1/12

          x = 1/12

NV
31 tháng 12 2021

\(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}=\dfrac{x^4}{xy+2xz}+\dfrac{y^4}{yz+2xy}+\dfrac{z^4}{xz+2yz}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\) 

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)

14 tháng 7 2021

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\)

\(\Rightarrow\dfrac{2}{x}+\dfrac{2}{y}+\dfrac{2}{z}\ge\dfrac{2}{\sqrt{xy}}+\dfrac{2}{\sqrt{yz}}+\dfrac{2}{\sqrt{zx}}\)

\(\Rightarrow\dfrac{2}{x}+\dfrac{2}{y}+\dfrac{2}{z}-\dfrac{2}{\sqrt{xy}}+\dfrac{2}{\sqrt{yz}}+\dfrac{2}{\sqrt{zx}}\ge0\)

\(\Rightarrow\dfrac{1}{x}-\dfrac{2}{\sqrt{xy}}+\dfrac{1}{y}+\dfrac{1}{y}-\dfrac{2}{\sqrt{yz}}+\dfrac{1}{z}+\dfrac{1}{z}-\dfrac{2}{\sqrt{zx}}+\dfrac{1}{x}\ge0\)

\(\Rightarrow\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{y}}\right)^2+\left(\dfrac{1}{\sqrt{y}}-\dfrac{1}{\sqrt{z}}\right)^2+\left(\dfrac{1}{\sqrt{z}}-\dfrac{1}{\sqrt{x}}\right)^2\ge0\) (luôn đúng)

Dấu = xảy ra khi \(x=y=z\)

31 tháng 7 2018

Sai đề kìa.

Bạn tham khảo: Câu hỏi của Ngoc An Pham - Toán lớp 9 | Học trực tuyến

23 tháng 12 2018

đề đúng đọ

16 tháng 4 2017

ta có:

\(\dfrac{x}{1-x^2}+\dfrac{y}{1-y^2}=\dfrac{x-xy^2+y-x^2y}{\left(1-x^2\right)\left(1-y^2\right)}=\dfrac{1-xy}{xy\left(x+1\right)\left(y+1\right)}\)

Áp dụng BĐT cauchy:

\(\left(x+y\right)^2\ge4xy\Leftrightarrow xy\le\dfrac{1}{4}\)

\(\left(x+1\right)\left(y+1\right)\le\dfrac{1}{4}\left(x+y+2\right)^2=\dfrac{9}{4}\)

do đó \(VT\ge\dfrac{1-\dfrac{1}{4}}{\dfrac{1}{4}.\dfrac{9}{4}}=\dfrac{3}{4}.\dfrac{16}{9}=\dfrac{4}{3}\)

dấu = xảy ra khi x=y=\(\dfrac{1}{2}\)

20 tháng 6 2017

Ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\) \(\ge\) \(\dfrac{2}{\sqrt{xy}}\) (1)

\(\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{yz}}\) (2)

\(\dfrac{1}{z}+\dfrac{1}{x}\ge\dfrac{2}{\sqrt{xz}}\) (3)

Cộng (1);(2);(3) vế theo vế ta được:

\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge2\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)

=> \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\) (đpcm)

20 tháng 6 2017

dâu''='' xảy ra khi x=y=z