K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2024

`A = 1.2.3 + 2.3.4 + ... + 203 . 204 . 205`

`4A = 1.2.3.4 + 2.3.4.(5-1) + ... + 203 . 204.205.(206-202)`

`4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + 203 . 204 . 205 . 206 - 202.203.204.205`

`4A = 203 . 204 . 205 . 206`

`A = 437207190`

13 tháng 7 2024

Mình cảm ơn bạn rất nhiều!!!

20 tháng 7 2023

a/

\(b=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

\(2b=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{99-97}{97.99}=\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}=\)

\(=1-\dfrac{1}{99}=\dfrac{98}{99}\Rightarrow b=\dfrac{98}{2.99}=\dfrac{49}{99}\)

b/

\(c=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}=\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{98.99}-\dfrac{1}{99.100}=\)

\(=\dfrac{1}{2}-\dfrac{1}{99.100}\)

c/

\(\dfrac{2}{5}.d=\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}+\dfrac{101-99}{99.100.101}=\)

\(=\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}+\dfrac{1}{99.100}-\dfrac{1}{100.101}=\)

\(=\dfrac{1}{2.3}-\dfrac{1}{100.101}\Rightarrow d=\left(\dfrac{1}{2.3}-\dfrac{1}{100.101}\right):\dfrac{2}{5}\)

12 tháng 4 2021

4: Đặt \(x=\dfrac{a+b}{a-b};y=\dfrac{b+c}{b-c};z=\dfrac{c+a}{c-a}\).

Ta có \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\dfrac{2a.2b.2c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)

\(\Rightarrow xy+yz+zx=-1\).

Bất đẳng thức đã cho tương đương:

\(x^2+y^2+z^2\ge2\Leftrightarrow\left(x+y+z\right)^2-2\left(xy+yz+zx\right)-2\ge0\Leftrightarrow\left(x+y+z\right)^2\ge0\) (luôn đúng).

Vậy ta có đpcm

12 tháng 4 2021

mình xí câu 45,47,51 :>

45. a) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{a}+\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{4}{2b}\ge\dfrac{\left(1+2\right)^2}{a+2b}=\dfrac{9}{a+2b}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b

b) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{\left(1+1+1\right)^2}{a+b+b}=\dfrac{9}{a+2b}\)(1)

\(\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{b+c+c}=\dfrac{9}{b+2c}\)(2)

\(\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{\left(1+1+1\right)^2}{c+a+a}=\dfrac{9}{c+2a}\)(3)

Cộng (1),(2),(3) theo vế ta có đpcm

Đẳng thức xảy ra <=> a=b=c

13 tháng 10 2021

Bài 2:

a. Ý nghĩa:

- Điện trở định mức của biến trở con chạy là 100Ω

- Cường độ dòng điện định mức của biến trở con chạy là 2A.

b. HĐT lớn nhất: \(U=R.I=100.2=200V\)

c. Chiều dài dây dẫn: \(R=p\dfrac{l}{S}\Rightarrow l=\dfrac{R.S}{p}=\dfrac{100.2.10^{-6}}{0,5.10^{-6}}=400m\)

 

13 tháng 10 2021

Bài 3:

Điện trở tương đương: \(R=\dfrac{U}{I}=\dfrac{30}{0,5}=60\Omega\)

Điện trở R1\(R_1=R-R_2=60-20=40\Omega\)

\(I=I_1=I_2=0,5A\left(R_1ntR_2\right)\)

Hiệu điện thế hai đầu mỗi điện trở:

\(U_1=R_1.I_1=40.0,5=20V\)

\(U_2=R_2.I_2=20.0,5=10V\)

20 tháng 12 2021

\(=24,5\)

20 tháng 12 2021

= 24,5

4 tháng 12 2021

\(p=738mmHg=98391,9312Pa\)

Áp suất tại chân cột:\(p_2\)

Áp suất tương ứng với độ cao cột thủy ngân:

\(p=d\cdot h\Rightarrow p=\left(p_2-738\right)\cdot136000Pa\)

 

4 tháng 12 2021

Đổi 738 mmHg =0,738 mHg

\(P=d_{Hg}.h=136000\cdot0,738=100368\left(Pa\right)\)

6 tháng 7 2017

D=1/2.[1/1.2-1/2.3+1/2.3-1/3.4+...+1/18.19-1/19.20]-3.[1-1/2+1/2-1/3+1/3-1/4+...+1/19-1/20]

  =1/2.[1/2-1/380]-3.[1-1/20]

  =1/2.[189/380]-3.[19/20]

  =189/760-57/20

  =189/760-2166/760

  =-1977/760

Nhớ nhak

10 tháng 9 2021

bạn có hỏi mình cái gì đâu mà bọn mình biết trả lời

bạn ph ? thì bọn mình mới biết nên trả lời thế nào

học chủ điểm có trong sách í

19 tháng 8 2021

học chủ điểm các phép cộng có nhớ trong phạm vi 100