K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 7

Lời giải:
\(B=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}....\frac{-99}{100}\\ =-\frac{3.8.15...99}{4.9...100}\) (do $B$ có lẻ các thừa số)

\(=-\frac{(1.3)(2.4)(3.5)...(9.11)}{2^2.3^2.4^2...10^2}\)

\(=-\frac{(1.2.3...9)(3.4.5...11)}{(2.3....10)(2.3.4...10)}\\ =-\frac{1.2.3...9}{2.3.4...10}.\frac{3.4.5...11}{2.3.4...10}\\ =-\frac{1}{10}.\frac{11}{2}=\frac{-11}{20}< \frac{-11}{21}\)

21/40>13/38 vì cả tử số và mẫu số của phân số 21/40 lớn hơn tử số và mẫu số của phân số 13/38.

23/27>23/30 vì có mẫu số bé hơn nên phân số đó lớn hơn.

19/44>18/41 vì cả tử số và mẫu số của phân số 19/44 lớn hơn tử số và mẫu số của phân số 18/41.

vậy A>B.

Bài toán 1. So sánh:202009và1020092009.Bài toán 2. Tính tỉ sốBA, biết:2008120072...320062200712008200912008120071...413121BABài toán 3. Cho x, y, z, tN*.Chứng minh rằng: M =tzxttzyztyxyzyxxcó giá trị không phải là sốtự nhiên.Bài toán 4. Tìm x; yZ biết:a. 25 –2y= 8( x – 2009)b.3xy=x3y+ 1997c. x + y + 9 = xy – 7.Bài toán 5. Tìm x biếta.1632)32(2)32(5  xxxb.42622...
Đọc tiếp

Bài toán 1. So sánh:

20

2009

10

20092009

.

Bài toán 2. Tính tỉ số

B

A

, biết:

2008

1

2007

2

...

3

2006

2

2007

1

2008

2009

1

2008

1

2007

1

...

4

1

3

1

2

1





B

A

Bài toán 3. Cho x, y, z, t

N

*

.

Chứng minh rằng: M =

tzx

t

tzy

z

tyx

y

zyx

x









có giá trị không phải là số

tự nhiên.

Bài toán 4. Tìm x; y

Z biết:

a. 25 –

2

y

= 8( x – 2009)

b.

3

x

y

=

x

3

y

+ 1997

c. x + y + 9 = xy – 7.

Bài toán 5. Tìm x biết

a.

1632)32(2)32(5  xxx

b.

426

22

 xxx

.

Bài toán 6. Chứng minh rằng:

22222222

10.9

19

...

4.3

7

3.2

5

2.1

3



< 1

Bài toán 7. Cho n số x

1

, x

2

, ..., x

n

mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu

x

1

.x

2

+ x

2

.x

3

+ ...+ x

n

.x

1

= 0 thì n chia hết cho 4.

Bài toán 8. Chứng minh rằng:

S =

20042002424642

2

1

2

1

...

2

1

2

1

...

2

1

2

1

2

1



 nn

< 0,2

Bài toán 9. Tính giá trị của biểu thức A =

n

x

+

n

x

1

giả sử

01

2

 xx

.

Bài toán 10. Tìm max của biểu thức:

1

43

2

x

x

.

Bài toán 11. Cho x, y, z là các số dương. Chứng minh rằng

D =

4

3

222





 yxz

z

xzy

y

zyx

x

Bài toán 12. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu

thức: A(x) = ( 3 - 4x + x

2

)

2004

.( 3 + 4x + x

2

)

2005

Bài toán 13. Tìm các số a, b, c nguyên dương thỏa mãn:

b

aa 553

23



và a + 3 =

c

5

Bài toán 14. Cho x = 2005. Tính giá trị của biểu thức:

120062006...200620062006

22002200320042005

 xxxxxx

Bài toán 15. Rút gọn biểu thức: N =

312

208

2

2





x

xx

xx

Bài toán 16. Trong 3 số x, y, z có 1 số dương, 1 số âm và một số 0. Hỏi mỗi số đó thuộc

loại nào biết:

zyyx

23



Bài toán 17. Tìm hai chữ số tận cùng của tổng sau:

B =

2009432

3...3333 

Bài toán 18. Cho 3x – 4y = 0. Tìm min của biểu thức: M =

22

yx 

Bài toán 19. Tìm x, y, z biết:

5432

222222

zyxzyx 



.

Bài toán 20. Tìm x, y biết rằng: x

2

+ y

2

+

22

11

yx

= 4

Bài toán 21. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ

số 6. Chứng minh rằng a + b + c + 8 là số chính phương.

Bài toán 22. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4

là số chính phương.

Bài toán 23. Chứng minh rằng nếu các chữ số a, b, c thỏa mãn điều kiện

cacdab :: 

thì

cabbbcabbb :: 

.

Bài toán 24. Tìm phân số

n

m

khác 0 và số tự nhiên k, biết rằng

nk

km

n

m 

.

Bài toán 25. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu

bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.

Bài toán 26. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).

Bài toán 27. Tìm n biết rằng: n

3

- n

2

+ 2n + 7 chia hết cho n

2

+ 1.

Bài toán 28. Chứng minh rằng: B =

32

12

2

n

là hợp số với mọi số nguyên dương n.

Bài toán 29. Tìm số dư khi chia (n

3

- 1)

111

. (n

2

- 1)

333

cho n.

Bài toán 30. Tìm số tự nhiên n để 1

n

+ 2

n

+ 3

n

+ 4

n

chia hết cho 5.

Bài toán 31.

a. Chứng minh rằng: Nếu a không là bội số của 7 thì a

6

– 1 chia hết cho 7.

b. Cho f(x + 1)(x

2

– 1) = f(x)(x

2

+9) có ít nhất 4 nghiệm.

c. Chứng minh rằng: a

5

– a chia hết cho 10.

Bài toán 32. Tính giá trị của biểu thức: A =

54

275 zxy 

tại (x

2

– 1) + (y – z)

2

= 16

1
5 tháng 7

Bạn viết gì vậy mình không hiểu??

HQ
Hà Quang Minh
Giáo viên
2 tháng 10 2023

a + b = -7 + 11 = 11 - 7 = 4

b + a = 11 + (-7) = 11 - 7= 4

Vậy a + b = b + a.

4 tháng 7 2015

Ta có: b=20092010.20092010

Lại có: a=20092009(20092010+1) ; b=(20092009+1).20092010

và a=20092009.20092010+20092009

    b=20092009.20092010+20092010

=>a<b

Bài toán 1. So sánh: 200920 và 2009200910Bài toán 2. Tính tỉ số , biết:Bài toán 3. Tìm x; y biết:a. . 25 – y2 = 8( x – 2009)b. x3 y = x y3  + 1997c. x + y + 9 = xy – 7.Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.Bài toán 5. Chứng minh rằng:Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 -...
Đọc tiếp

Bài toán 1. So sánh: 200920 và 2009200910

Bài toán 2. Tính tỉ số \frac{A}{B}, biết:

Bài tập nâng cao Toán 7

Bài toán 3. Tìm x; y biết:

a. . 25 – y2 = 8( x – 2009)

b. xy = x y3  + 1997

c. x + y + 9 = xy – 7.

Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.

Bài toán 5. Chứng minh rằng:

Bài tập nâng cao Toán 7

Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x)2005

Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.

Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.

Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.

Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).

Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.

Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5

6
27 tháng 10 2021

Bài 11: 

Ta có: \(n^3-n^2+2n+7⋮n^2+1\)

\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)

\(\Leftrightarrow n^2-64⋮n^2+1\)

\(\Leftrightarrow n^2+1\in\left\{1;5;13;65\right\}\)

\(\Leftrightarrow n^2\in\left\{0;4;64\right\}\)

hay \(n\in\left\{0;-2;2;8;-8\right\}\)

27 tháng 10 2021

cái này mà lớp 1 hả cj xu???

27 tháng 12 2016

chia thoi to lop 5

9 tháng 5 2018
  Giải bài 87 trang 43 SGK Toán 6 Tập 2 | Giải toán lớp 6 Giải bài 87 trang 43 SGK Toán 6 Tập 2 | Giải toán lớp 6 Giải bài 87 trang 43 SGK Toán 6 Tập 2 | Giải toán lớp 6
a) Tính: Giải bài 87 trang 43 SGK Toán 6 Tập 2 | Giải toán lớp 6 Giải bài 87 trang 43 SGK Toán 6 Tập 2 | Giải toán lớp 6 Giải bài 87 trang 43 SGK Toán 6 Tập 2 | Giải toán lớp 6

b) So sánh số

chia với 1.

1 = 1 Giải bài 87 trang 43 SGK Toán 6 Tập 2 | Giải toán lớp 6 Giải bài 87 trang 43 SGK Toán 6 Tập 2 | Giải toán lớp 6

c) So sánh thương

với số bị chia.

Giải bài 87 trang 43 SGK Toán 6 Tập 2 | Giải toán lớp 6 Giải bài 87 trang 43 SGK Toán 6 Tập 2 | Giải toán lớp 6 Giải bài 87 trang 43 SGK Toán 6 Tập 2 | Giải toán lớp 6

Kết luận:

- Một phân số chia cho 1 bằng chính nó.

- Một phân số chia cho phân số nhỏ hơn 1 sẽ lớn hơn chính nó.

- Một phân số chia cho phân số lớn hơn 1 sẽ nhỏ hơn chính nó.