K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giúp mình với,giải chi tiết cho mình nha!Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EFa. CM: AK = KC.b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KFBài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.a. CM: Tứ giác ADME là hình bình hành.b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?c. Nếu tam giác...
Đọc tiếp

Giúp mình với,giải chi tiết cho mình nha!

Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF

a. CM: AK = KC.

b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF

Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.

a. CM: Tứ giác ADME là hình bình hành.

b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?

c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?

d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.

Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.

a. Chứng minh AE vuông góc BF

b. Chứng minh tứ giác BFDC là hình thang cân.

c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.

d. Chứng minh M, E, D thẳng hàng. 
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED

 

3
14 tháng 6 2017

bài 3:

D,                 bài giải 

diện tích là:

                (8x5):2=20(cm2)

                          Đ/S:20cm2

22 tháng 11 2020

Bài 2 : 

A B C D M E

a, Xét tam giác ABC ta có : 

D là trung điểm AB

M là trung điểm CB 

=)) DM là đường TB tam giác ABC 

=)) DM // AC hay DM // AE (1) 

Ta có : E là trung điểm AC 

M là trung điểm BA 

=)) EM là đường TB tam giác ABC 

=)) EM // AB hay EM // AD (2)

 Từ 1;2 =)) Tứ giác ADME là hình bình hành 

b, Nếu tam giác ABC cân tại A => AM là đường trung tuyến AM 

=)) AM đồng thời là tia phân giác của ^A 

Xét hình bình hành ADME có 2 đường chéo AM là tia phân giác của ^A (cmt)

=)) Tứ giác  ADME là hình thoi 

c, Nếu tam giác ABC vuông tại A => ^A = 90^0

Xét hình bình hành ADME có ^A =90^0

=)) Tứ giác ADME là hình chữ nhật 

Giúp mình với,giải chi tiết cho mình nha!Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EFa. CM: AK = KC.b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KFBài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.a. CM: Tứ giác ADME là hình bình hành.b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?c. Nếu tam giác...
Đọc tiếp

Giúp mình với,giải chi tiết cho mình nha!

Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF

a. CM: AK = KC.

b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF

Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.

a. CM: Tứ giác ADME là hình bình hành.

b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?

c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?

d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.

Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.

a. Chứng minh AE vuông góc BF

b. Chứng minh tứ giác BFDC là hình thang cân.

c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.

d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED

 

4
15 tháng 12 2016

2/

a/ hình thang ABCD có

AB // EF

==> AB // KF

xét tam giác ABC có

F là trung điểm của BC

AB // KF

==> KF là đường trung bình của tam giác ABC

==> K là trung điểm của AC

==> AK = KC

b/

E là trung điểm AD

F là trung điểm BC

==> EF là đường trung bình của hình thang ABCD

==> EF = (AB + CD) / 2 = (4 + 10) / 2 = 7(cm)

KF là đường trung bình của tam giác ABC nên

KF = AB / 2 = 4 / 2 = 2(cm)

==> EK = EF - KF = 7 - 2 = 5(cm)

vậy EK = 5(cm), KF = 2 (cm)

3/

a/ ta có

D là trung điểm của AB

M là trung điểm của BC

==> DM là đường trung bình của tam giác ABC

==> Dm // AC

==> DM // AE ( E thuộc AC, DM // AC)

chứng minh tương tự ta có

ME là đường trung bình của tam giác ABC

==> AD // ME

tứ giác ADME có DM // AE, AD // ME nên là HBH

b/ ( nếu tam giác ABC cân tại A)

tam giác ABC cân tại A ==> AB = AC

AD = 1/2 AB (D là trung điểm của AB)

AE = 1/2 AC (E là trung điểm của AC)

==> AD = AE

c/ (nếu tam giác ABC vuông)

ta có

tứ giác ADME là HBH

góc A = 90 độ

==> tứ giác ADME là HCN

d/ ta có

AB^2 + AC^2 = BC^2

6^2 + 8^2 = 100

==> BC = 10(cm)

AM là đường trung tuyến của tam giác ABC

==> AM = 1/2 BC = 1/2 . 10 = 5(cm)

vậy AM = 5cm

 

31 tháng 1 2017

Bài 2:Cho mk ý kiến,sai đề à???4cm=6cm nhé

Ôn tập toán 8

Bài 3:

Ôn tập toán 8

Bài 4:

Nối D với E, nối D với M:
Chứng minh được ED//FB (BEDF là hình thoi) (1)
BF là đường trung bình tam giác AMD
=> MD//FB (tc) (2)
(1),(2) => MD trùng với ED (định lý) ( Qua 1 điểm ko thuộc đường thẳng a có 1 và chỉ 1 đường thẳng đi qua điểm đó và song song với đường thẳng a )
từ đó bạn có thể cm BMCD là hình chữ nhật ( nếu cần )
( xét từ1 giác BDCM có BC cắt DM tại trung điểm của mỗi đoạn ->BMCD là Hình chữ nhật)

Bài 5:

Ôn tập toán 8


NV
24 tháng 3 2022

\(\widehat{BAD}=120^0\Rightarrow\widehat{ABC}=60^0\Rightarrow\) các tam giác ABC và ACD là các tam giác đều

\(AH=AC\Rightarrow AH=AC=AB\Rightarrow\Delta HBC\)  vuông tại B

\(\Rightarrow HB\perp BC\Rightarrow HB\perp AD\)

Qua H kẻ đường thẳng \(d\perp\left(ABCD\right)\Rightarrow S\in d\)

Gọi O là giao điểm AC và BD, do góc giữa (SBD) và đáy bằng 60 độ

\(\Rightarrow\widehat{SOH}=60^0\)

\(\Rightarrow SH=OH.tan60^0=\left(AH+AO\right).tan60=\left(a+\dfrac{a}{2}\right).tan60^0=\dfrac{3a\sqrt{3}}{2}\)

\(V_{S.ABCD}=\dfrac{1}{3}SH.S_{ABCD}=\dfrac{1}{3}.\dfrac{3a\sqrt{3}}{2}.2.\dfrac{a^2\sqrt{3}}{4}=\dfrac{3a^3}{4}\)

 

NV
24 tháng 3 2022

b.

\(SC=\sqrt{SH^2+HC^2}=\sqrt{SH^2+\left(2AC\right)^2}=\dfrac{a\sqrt{43}}{2}\)

\(\Rightarrow M\) là trung điểm SC \(\Rightarrow AM\) là đường trung bình tam giác SHC

\(\Rightarrow\left\{{}\begin{matrix}AM||SH\Rightarrow AM\perp\left(ABCD\right)\\AM=\dfrac{1}{2}SH=\dfrac{3a\sqrt{3}}{4}\end{matrix}\right.\)

\(HD=\sqrt{OD^2+OD^2}=\sqrt{\left(\dfrac{3a}{2}\right)^2+\left(\dfrac{a\sqrt{3}}{2}\right)^2}=a\sqrt{3}\)

\(\Rightarrow SD=\sqrt{SH^2+HD^2}=\dfrac{a\sqrt{39}}{2}\Rightarrow SN=\dfrac{1}{3}SD\Rightarrow ND=\dfrac{2}{3}SD\)

\(\Rightarrow d\left(N;\left(MAD\right)\right)=\dfrac{2}{3}d\left(S;\left(MAD\right)\right)\)

Mà \(SH||\left(MAD\right)\Rightarrow d\left(S;\left(MAD\right)\right)=d\left(H;\left(MAD\right)\right)\)

Gọi E là giao điểm BH và AD, ta có:

\(\left\{{}\begin{matrix}HB\perp AD\left(cmt\right)\\AM\perp\left(ABCD\right)\Rightarrow AM\perp HB\end{matrix}\right.\) \(\Rightarrow HB\perp\left(MAD\right)\)

\(\Rightarrow HE=d\left(H;\left(MAD\right)\right)\)

\(HE=\dfrac{1}{2}HB=\dfrac{1}{2}HD=\dfrac{a\sqrt{3}}{2}\)

\(\Rightarrow d\left(N;\left(MAD\right)\right)=\dfrac{2}{3}HE=\dfrac{a\sqrt{3}}{3}\)

\(\Rightarrow V_{AMND}=\dfrac{1}{3}.d\left(N;\left(MAD\right)\right).\dfrac{1}{2}AM.AD=\dfrac{a^3}{8}\)

a: Xét tứ giác ADBG có

H là trung điểm chung của AB và DG

góc ADB=90 độ

Do đó: ADBG là hình chữ nhật

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

EA=EB=10/2=5cm

P=(5+5+6)/2=16/2=8cm

\(S=\sqrt{8\cdot\left(8-5\right)\left(8-5\right)\left(8-6\right)}=\sqrt{8\cdot2\cdot3^2}=4\cdot3=12\left(cm^2\right)\)

 

6 tháng 11 2018

B A M E F D C 1 60 độ

a) - Vì ABCD là hình bình hành(gt)
\(\Rightarrow BC //AD\)và BC=AD
Mà \(E\in BC,F\in AD\)và \(BE=\frac{1}{2}BC,\text{AF}=\frac{1}{2}AD\)(gt)

Nên\(BE//\text{AF}\)và BE=AF
=> ABEF là hình bình hành (1)
Mặt khác AD=2AB(gt)
=>\(AB=\frac{AD}{2}\)

\(\text{AF}=\frac{AD}{2}\left(gt\right)\)

Nên AB=AF(2)
Từ (1) và (2) => ABEF là hình thoi
=> \(AE\perp BF\)
b) Ta có BC//FD(BC//AD,F thuộc AD)
=> BCDF là hình thang (3)
- Vì ABCD là hình bình hành(gt)
Nên \(\widehat{BAD}=\widehat{C}=60^o\)(4)
- Ta có : \(\widehat{B\text{AF}}+\widehat{ABE}=180^0\)(Trong cùng phía,BC//AD)
                          \(\widehat{ABE}=180^0-\widehat{B\text{AF}}\)

                              \(\widehat{ABE}=180^o-60^o=120^o\)

Mà ABEF là hình thoi

=> \(\widehat{B_1}=\widehat{\widehat{\frac{ABE}{2}}=\frac{120^o}{2}=60^o}\)(5)
Từ (4) và (5) => \(\widehat{C}=\widehat{B_1}\)(6)
Từ (3) và (6)
=> BCDF là hình thang cân
c) Vì ABCD là hình bình hành(gt)
Nên AB//CD và AB=CD
Mà M thuộc AB và AB=BM(M đối xứng với A qua B)
=> B là trung điểm của AB

Nên BM//CD và BM=CD

=> BMCD là hình bình hành (7)

- Xét \(\Delta ABF\)có ;
AB=AF(cmt)

=> \(\Delta ABF\)cân tại A
Mà \(\widehat{B\text{AF}}=60^o\)(gt)

Nên \(\Delta ABF\)đều

=> AB=BF=AF
- Xét \(\Delta ABD\)có:
BF là đường trung tuyến ứng với AD (FA=FD)
\(BF=\frac{1}{2}AD\)(BF=FA mà \(FA=\frac{1}{2}AD\))
Nên \(\Delta ABD\)vuông tại B
=> \(\widehat{MBD}=90^0\)(8)
Từ (7) và (8) =>BMCD là hình chữ nhật
Mà E là trung điểm của BC(gt)
Nên E là trung điểm của MD

Hay E,M,D thẳng hàng

6 tháng 11 2018

Câu hỏi của Yaden Yuki - Toán lớp 8 - Học toán với OnlineMath Em tham khảo bài làm ở link này nhé!

     Bài 1: Cho hình vuông ABCD, E là điểm thuộc cạnh DC, F là điểm trên tia đối của tia BC sao cho BF=DE.a/ chứng minh tam giác AEF vuông cân.b/ Gọi I là trung điểm EF. Lấy K đối xứng với A qua I. Chứng minh tứ giác AEKF là hình vuông.     Bài 2: cho tam giác ABC vuông tại A có góc ABC=60 độ, kẻ tia Ax song song với BC. Trên tia Ax lấy D sao cho AD = DC.a/ Tính các góc BAD và DAC.b/ chứng minh ABCD là hình thang cân.c/...
Đọc tiếp

     Bài 1: Cho hình vuông ABCD, E là điểm thuộc cạnh DC, F là điểm trên tia đối của tia BC sao cho BF=DE.
a/ chứng minh tam giác AEF vuông cân.
b/ Gọi I là trung điểm EF. Lấy K đối xứng với A qua I. Chứng minh tứ giác AEKF là hình vuông.
     Bài 2: cho tam giác ABC vuông tại A có góc ABC=60 độ, kẻ tia Ax song song với BC. Trên tia Ax lấy D sao cho AD = DC.
a/ Tính các góc BAD và DAC.
b/ chứng minh ABCD là hình thang cân.
c/ gọi E là trung điểm BC. Chứng minh ADEB là hình thoi.
d/ cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED.
     Bài 3: cho tam giác ABC có hai trung tuyến BD và CE cắt nhau tại G. Gọi M, N lần lượt là trung điểm của BG và CG.
a/ chứng minh MNDE là hình bình hành.
b/ điều kiện của tam giác ABC để hình bình hành MNDE là hình chữ nhật, hình thoi.
c/ chứng minh DE + MN = BC.

~~~~~~~~~~~GIÚP MK VS CÁC BẠN LÀM BÀI NÀO CŨNG ĐƯỢC~~~~~~~~~~~~~~~~~

2
12 tháng 11 2017

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

22 tháng 11 2017

Câu 4: Cho tam giác ABC vuông tại A. Biết AB=5cm, BC=13cm. Gọi H, K lần Lượt là trung điểm của AB và BC. Tính độ dài HK

giúp mình nhoa!!

Giải thích các bước giải:

ta có: Tam giác ABC vuông tại A (gt)

=> AB^2+AC^2=BC^2

      6^2+8^2     =BC^2

       36+64         =BC^2

        100             =BC^2

     =>BC=10cm

Tam giác ABC vuông tại A có Am là đg trung tuyến

=> AM=BC/2=10/2=5cm

15 tháng 3 2020

HÌNH VẼ THÌ BẠN TỰ VẼ NHÉ, HÌNH NÀY DỄ VẼ MÀ NHỈ. 

Câu a bạn V (Team BTS) làm rồi nên mình chỉ làm các câu còn lại thôi nhé.

b) Vì DM vuông góc AB, AC vuông góc AB (gt) => DM // AC.

=> DMCA là hình thang mà góc ADM = góc DAC = 90 độ.

Do đó ADMC là hình thang vuông.

c) Xét tam giác ABC ta có: DM // AC (cmt), M là trung điểm BC (AM là trung tuyến)

=> D là trung điểm của AB.

Tứ giác AEBM có AB và EM là hai đường chéo cắt nhau tại trung điểm D. => AEBM là hình bình hành. (1)

Lại xét tam giác AMB cân tại M (MA=MB) có MD là trung tuyến => MD cũng là đường cao=> ME vuông góc AB tại D. (2)

Từ (1) và (2) => AEBM là hình thoi.

d) Vì AEBM là hình thoi => AE // BM, AE = BM. 

Mà BM = MC =>  AE // MC, AE = MC. Do đó AEMC là hình bình hành.

e, Câu e mình không hiểu lắm vì thấy đề bài cứ sai sai làm sao. Mình chỉ chứng minh câu F đối xứng với E qua A thôi nhé.

Gọi I là giao điểm của AC và MF. Vì M đối xứng F qua AC => I là trung điểm MF, AC vuông góc MF tại I. 

Chứng minh tương tự câu c ta sẽ được AFMC là hình thoi => AF // MC, AF = MC. 

Mà AE // MC, AE = MC (cmt)

=> A, E, F thẳng hàng (tiên đề Ơ-clit) và A là trung điểm của EF (AE=AF)

Vậy F đối xứng E qua A.