Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- 3/12;6/24
- 3737/9999=373737/999999=37373737/99999999 vì chúng đều = 37/99.
Đó là dạng bài toán so sánh phân số
Phân số nào nhỏ nhất xếp trước bên trái sau đó xếp tiếp các phân số từ trái sang phải
1. Tìm MSC rồi quy đồng
2.Nếu ko có MSC thì bạn quy đồng tử số
Lời giải:
$\frac{a+2020}{a+2017}=\frac{a+2017+3}{a+2017}=1+\frac{3}{a+2017}$
$\frac{a+2021}{a+2018}=\frac{a+2018+3}{a+2018}=1+\frac{3}{a+2018}$
Hiển nhiên: $\frac{3}{a+2017}> \frac{3}{a+2018}$
Suy ra $1+\frac{3}{a+2017}> 1+\frac{3}{a+2018}$
Hay $\frac{a+2020}{a+2017}> \frac{a+2021}{a+2018}$
Lời giải
a) Diện tích hình chữ nhật ABCD gồm:
8 × 4 = 32 (ô vuông)
Diện tích hình tam giác MDC gồm 12 ô vuông và 8 nửa ô vuông (4 ô vuông), tức là gồm:
12 + 4 = 16 (ô vuông)
Diện tích hình chữ nhật ABCD gấp diện tích hình tam giác MDC số lần là:
32 : 16 = 2 (lần)
b) Diện tích hình chữ nhật IKCD gồm:
8 × 2 = 16 (ô vuông)
Diện tích hình chữ nhật IKCD bằng diện tích hình tam giác MDC.
Nhớ tick mình nhé, chúc bạn học tốt!
+ Quy đồng mẫu các phân số: \(\dfrac{3}{4}\) và \(\dfrac{5}{6}\):
\(BCNN\left( {6,4} \right) = 12\)
Thừa số phụ: \(12:4 = 3; 12:6=2\)
Ta có: \(\dfrac{3}{4} = \dfrac{{3.3}}{{4.3}} = \dfrac{9}{{12}}\\\dfrac{5}{6} = \dfrac{{5.2}}{{6.2}} = \dfrac{{10}}{{12}}\)
+ So sánh hai phân số cùng mẫu:
Vì 9 < 10 nên \(\dfrac{9}{{12}} < \dfrac{{10}}{{12}}\) nên \(\dfrac{3}{4} < \dfrac{5}{6}\).
Gọi tứ giác nằm ngang là ABCD.
Hình dựng đứng là ABEMN
Từ điểm M kẻ đường thẳng//AB cắt BE tại G.
Do NM_|_AN tại A
MN//AB; BG//AN
=>BG_|_BE nên tam giác MGE vuông tại G. (1)
=>Tứ giác ABGN là hình chữ nhật=Hình chữ nhật ABCD( vì AB//=CD=14,2 m)
=>AN=AC=5 (m)
Từ (1) =>EG là đường cao của tam giác MGE có cạnh đáy MG.
=>EG=BE-BG=8-5=3 (m)
=>MG=NG-MN=14,2-6,2=8 (m)
Vậy S(MGE)=1/2.EG.MG=1/2.3.8=12 (m2)
=>S(ABCD)+S(ABGN)=2. S(ABCD)
=2.AB.AD=2.5.14,2=142 (m2)
=> Diện tích hình đã cho bằng:
12+142=154 m2
Đ s:
Gọi tứ giác nằm ngang là ABCD.
Hình dựng đứng là ABEMN
Từ điểm M kẻ đường thẳng//AB cắt BE tại G.
Do NM_|_AN tại A
MN//AB; BG//AN
=>BG_|_BE nên tam giác MGE vuông tại G. (1)
=>Tứ giác ABGN là hình chữ nhật=Hình chữ nhật ABCD( vì AB//=CD=14,2 m)
=>AN=AC=5 (m)
Từ (1) =>EG là đường cao của tam giác MGE có cạnh đáy MG.
=>EG=BE-BG=8-5=3 (m)
=>MG=NG-MN=14,2-6,2=8 (m)
Vậy S(MGE)=1/2.EG.MG=1/2.3.8=12 (m2)
=>S(ABCD)+S(ABGN)=2. S(ABCD)
=2.AB.AD=2.5.14,2=142 (m2)
=> Diện tích hình đã cho bằng:
12+142=154 m2
a: \(-\dfrac{25}{20}< 0;0< \dfrac{20}{25}\)
Do đó: \(-\dfrac{20}{25}< \dfrac{20}{25}\)
b: \(\dfrac{15}{21}=\dfrac{15:3}{21:3}=\dfrac{5}{7};\dfrac{21}{49}=\dfrac{21:7}{49:7}=\dfrac{3}{7}\)
mà 5>3
nên \(\dfrac{15}{21}>\dfrac{21}{49}\)
c: \(\dfrac{-19}{49}=\dfrac{-19\cdot47}{49\cdot47}=\dfrac{-893}{49\cdot47}\)
\(\dfrac{-23}{47}=\dfrac{-23\cdot49}{47\cdot49}=\dfrac{-1127}{47\cdot49}\)
mà -893>-1127
nên \(-\dfrac{19}{49}>-\dfrac{23}{47}\)