(13^n+2 + 13^n ) Chia Hết Cho 11
Ai giúp vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 4n-5 chia hết cho 13
4n-5
=4n+35n-35n-5
=39n-5(7n-1) chia hết cho 39
vì 39 chia hết cho 13
=> 39n-5(7n-1) chia hết cho 13
=> 4n-5 chia hết cho 13
a, n+5 chia hết cho n+2
n+2 chia hết cho n+2
=> (n+5) - (n+2) chia hết cho 2
n+5-n-2 chia hết cho 2
3 chia hết cho 2
=>2 thuộc Ư(3)=...
b, 2n+1 chia hết cho n+5
n+5 chia hết cho n+5 => 2(n+5) chia hết cho n+5
Làm tương tự ý a
c, n2+3n+13 = n (n+3) +13
Mà n(n+3) chia hết cho n+3
=> 13 chia hết cho n+3
=> n+3 thuộc Ư(13)
=>...
b) \(n+7⋮n\)
Mà: \(n⋮n\)
\(\Rightarrow7⋮n\)
\(\Rightarrow n\inƯ\left(7\right)=1;7;-1;-7\)
Vậy giá trị n cần tìm là: n=1;-1;7;-7
\(n+11⋮n+9\)
\(\Rightarrow\left(n+9\right)+2⋮n+9\)
Do: \(n+9⋮n+9\)
\(\Rightarrow2⋮n+9\)
\(\Rightarrow n+9\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)
Lập bảng giá trị:
n+9 | 1 | 2 | -1 | -2 |
n | -8 | -7 | -10 | -11 |
Vậy giá trị n cần tìm là: n=-8;-7;-10;-11
\(2n+13⋮n+3\)
\(\Rightarrow2\left(n+3\right)+7⋮n+3\)
Vì: \(2\left(n+3\right)⋮n+3\)
\(\Rightarrow7⋮n+3\)
\(\Rightarrow n+3\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)
Lập bảng giá trị:
n+3 | 1 | 7 | -1 | -7 |
n | -2 | 4 | -4 | -10 |
Vậy giá trị n cần tìm là: n=-2;4;-4;-10
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Bài 1:
a) n+4 chia hết cho n-13
=> n-13+17 chia hết cho n-13
=> 17 chia hết cho n-13
=> n-13 \(\in\) Ư(17) = {1;-1;17;-17}
=> n \(\in\) {14;12;30;-4}
Vì n \(\in\) N nên n \(\in\) {14;20;30}
b) n-5 chia hết cho n-11
=> n-11+6 chia hết cho n-11
=> 6 chia hết cho n-11
=> n-11 \(\in\) Ư(6) = {1;-1;2;-2;3;-3;6;-6}
=> n \(\in\) {12;10;13;9;14;8;17;5}
Bài 2:
Để \(\overline{34x5}\) chia hết cho 9
=> 3+4+x+5 chia hết cho 9
=> 12+x chia hết cho 9
=> x = 7
Câu 1:
Ta có:
\(n=11k+4\)
\(\Rightarrow n^2=\left(11k+4\right)^2=121k^2+88k+16\)
Vì \(121k^2\) chia hết cho 11; \(88k\) chia hết cho 11 và 16 chia cho 11 dư 5 nên
\(121k^2+88k+16\) chia cho 11 dư 5
Do đó \(n^2\) chia cho 11 dư 5.
Câu 2:
Ta có:
\(n=13k+7\)
\(\Rightarrow n^2-10=\left(13k+7\right)^2-10\)
\(=169k^2+182k+49-10=169k^2+182k+39\)
Vì \(169k^2;182k;39\) chia hết cho 13 nên \(169k^2+182k+39\) chia hết cho 13.
Do đó \(n^2-10\) chia hết cho 13.
Chúc bạn học tốt!!!
Bg
C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))
=> n = 11k + 4 (với k \(\inℕ\))
=> n2 = (11k)2 + 88k + 42
=> n2 = (11k)2 + 88k + 16
Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5
=> n2 chia 11 dư 5
=> ĐPCM
C2: Ta có: n = 13x + 7 (với x \(\inℕ\))
=> n2 - 10 = (13x)2 + 14.13x + 72 - 10
=> n2 - 10 = (13x)2 + 14.13x + 39
Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13
=> n2 - 10 \(⋮\)13
=> ĐPCM
Ta co:\(\hept{\begin{cases}2a+b⋮13\\5a-4b⋮13\end{cases}\Rightarrow\hept{\begin{cases}-2.\left(2a+b\right)⋮13\\5a-4b⋮13\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}-4a-2b⋮13\\5a-4b⋮13\end{cases}}\Rightarrow-4a-2b+5a-4b=a-6b\)