ab = ? a+b=9,a*b=2*(a*b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a+b=5
\(\Leftrightarrow\left(a+b\right)^2=25\)
\(\Leftrightarrow a^2+b^2+2ab=25\)
\(\Leftrightarrow2ab=16\)
hay ab=8
Ta có: \(a^3+b^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=5^3-3\cdot8\cdot5=5\)
\(1,\text{Giả sử }a^2+b^2+c^2\ge ab+bc+ca\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(\text{luôn đúng}\right)\)
Vậy \(a^2+b^2+c^2\ge ab+bc+ca\)
Dấu \("="\Leftrightarrow a=b=c\)
\(2,\forall a,b,c>0\\ \text{Áp dụng BĐT cosi: }\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\dfrac{1}{abc}}=9\sqrt[3]{\dfrac{abc}{abc}}=9\)
Dấu \("="\Leftrightarrow a=b=c\)
a) \(\dfrac{9-a}{\sqrt{a}+3}-\dfrac{9-6\sqrt{a}+a}{\sqrt{a}-3}\)
\(=\dfrac{\left(3-\sqrt{a}\right)\left(3+\sqrt{a}\right)}{\sqrt{a}+3}-\dfrac{\left(\sqrt{a}-3\right)^2}{\sqrt{a}-3}\)
\(=\dfrac{3-\sqrt{a}}{1}-\dfrac{\sqrt{a}-3}{1}\)
\(=3-\sqrt{a}-\sqrt{a}+3\)
\(=-2\sqrt{a}+6\)
b) \(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\)
\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}\)
\(=\dfrac{\sqrt{a}-\sqrt{b}}{1}-\dfrac{\sqrt{a}-\sqrt{b}}{1}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)
\(=0\)
\(a,\dfrac{9-a}{\sqrt{a}+3}-\dfrac{9-6\sqrt{a}+a}{\sqrt{a}-3}\left(dkxd:a\ne9,a\ge0\right)\)
\(=\dfrac{-\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}{\sqrt{a}+3}-\dfrac{\left(3-\sqrt{a}\right)^2}{3-\sqrt{a}}\)
\(=-\left(\sqrt{a}-3\right)+\left(3-\sqrt{a}\right)\)
\(=-\sqrt{a}+3+3-\sqrt{a}\)
\(=6-2\sqrt{a}\)
\(b,\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\left(dkxd:a\ne b,a\ge0,b\ge0\right)\)
\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}\)
\(=\sqrt{a}-\sqrt{b}-\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)
\(=0\)
Ta có: \(\left(a+\sqrt{a^2+9}\right)\left(b+\sqrt{b^2+9}\right)=9\)
\(\Leftrightarrow\frac{\left(a-\sqrt{a^2+9}\right)\left(a+\sqrt{a^2+9}\right)\left(b+\sqrt{b^2+9}\right)}{a-\sqrt{a^2+9}}=9\)
\(\Leftrightarrow\frac{-9\left(b+\sqrt{b^2+9}\right)}{a-\sqrt{a^2+9}}=9\)
\(\Rightarrow b+\sqrt{b^2+9}=\sqrt{a^2+9}-a\)
Tương tự chỉ ra được: \(a+\sqrt{a^2+9}=\sqrt{b^2+9}-b\)
Cộng vế 2 PT trên lại ta được:
\(a+b+\sqrt{a^2+9}+\sqrt{b^2+9}=\sqrt{a^2+9}+\sqrt{b^2+9}-a-b\)
\(\Leftrightarrow2\left(a+b\right)=0\Rightarrow a=-b\)
Thay vào M ta được:
\(M=2a^4-a^4-6a^2+8a^2-10a+2a+2026\)
\(M=a^4+2a^2-8a+2026\)
\(M=\left(a^4+2a^2-8a+5\right)+2021\)
\(M=\left[\left(a^4-a^3\right)+\left(a^3-a^2\right)+\left(3a^2-3a\right)-\left(5a-5\right)\right]+2021\)
\(M=\left(a-1\right)\left(a^3+a^2+3a-5\right)+2021\)
\(M=\left(a-1\right)^2\left(a^2+2a+5\right)+2021\)\(\ge0+2021=2021\)
Dấu "=" xảy ra khi: a = 1 => b = -1
Vậy Min(M) = 2021 khi a = 1 và b = -1
Ta có : a. b = 2 . (a.b)
2ab - ab = 0
ab=0
suy ra a= 0 hoặc b=0
Trường hợp 1 : a = 0 suy ra b = 9 ( vì a+b = 9 ) suy ra ab = 09( loại )(vì a là chữ số nên ko thể = 0 )
Trường hợp 2 : b= 0 suy ra a = 9 ( vì a+b=9) suy ra ab= 90 (nhận)
Vậy số cần tìm là 90