K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2024

\(4x^2-36=0\\ \Leftrightarrow\left(2x\right)^2-6^2=0\\ \Leftrightarrow\left(2x-6\right)\left(2x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+6=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{2}=3\\x=-\dfrac{6}{2}=-3\end{matrix}\right.\)

8 tháng 7 2024

\(4x^2-36=0\)

\(4x^2\)         \(=0+36\)

\(4x^2\)         \(=36\)

  \(x^2\)         \(=36:4\)

  \(x^2\)         \(=9\)

  \(x^2\)         \(=3^2\)

\(=>x=3\)

Vậy...

 

a: =>25-4x=1

=>4x=24

hay x=6

b: =>2x-4=0

hay x=2

c: =>x-35=115

hay x=150

d: =>x-2=12

hay x=14

e: =>x-36=216

hay x=252

19 tháng 8 2016

a) (x - 4)2 - 36 = 0

=> (x - 4)2 = 36

=> x - 4 = 6 hoặc x - 4 = -6

=> x = 10 hoặc x = -2

b) hình như sai đề bn ạ

c) x(x - 5) - 4x + 20 = 0

=> x(x - 5) - 4(x - 5) = 0

=> (x - 5)(x - 4) = 0

=> x - 5 = 0 hoặc x - 4 = 0

=> x = 5 hoặc x = 4

2 tháng 10 2021

2a) pt <=> (x + 6)^2 = 0

<=> x = -6

b) pt <=> (4x - 1)^2 = 0

<=> x = 1/4

c) pt<=> (x + 1)^3 = 0

<=> x = -1

Bài 1:

a: Ta có: \(A=\left(4x+3y\right)^2+\left(4x-3y\right)^2\)

\(=16x^2+24xy+9y^2+16x^2-24xy+9y^2\)

\(=32x^2+18y^2\)

b: Ta có: \(B=\left(x-2\right)^3-\left(x+2\right)^3\)

\(=x^3-6x^2+12x-8-x^3-6x^2-12x-8\)

\(=-12x^2-24\)

Bài 2: 

a: Ta có: \(x^2+12x+36=0\)

\(\Leftrightarrow x+6=0\)

hay x=-6

b: Ta có: \(16x^2-8x+1=0\)

\(\Leftrightarrow4x-1=0\)

hay \(x=\dfrac{1}{4}\)

Bài 1: 

a: Ta có: \(A=\left(4x+3y\right)^2+\left(4x-3y\right)^2\)

\(=16x^2+24xy+9y^2+16x^2-24xy+9y^2\)

\(=32x^2+18y^2\)

b: Ta có: \(B=\left(x-2\right)^3-\left(x+2\right)^3\)

\(=x^3-6x^2+12x-8-x^3-6x^2-12x-8\)

\(=-12x^2-24\)

c: Ta có: \(C=\left(x+2y\right)^2+2\left(x+2y\right)\left(x-2y\right)+\left(x-2y\right)^2\)

\(=\left(x+2y+x-2y\right)^2\)

\(=4x^2\)

2 tháng 8 2019

a) \(x^2-36=0\)

\(\Leftrightarrow x^2=36\)

\(\Leftrightarrow x=\pm\sqrt{36}=\pm6\)

2 tháng 8 2019

b) \(\left(3x-5\right)^2-\left(x+6\right)^2=0\)

\(\Leftrightarrow\left(3x-5-x-6\right)\left(3x-5+x+6\right)=0\)

\(\Leftrightarrow\left(2x-11\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{11}{2}\\x=\frac{-1}{4}\end{cases}}\)

1 tháng 8 2017

ã) x=-3

19 tháng 8 2021

1. \(4x^2-49=0\)

\(\Leftrightarrow\left(2x+7\right)\left(2x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+7=0\Leftrightarrow x=-\dfrac{7}{2}\\2x-7=0\Leftrightarrow x=\dfrac{7}{2}\end{matrix}\right.\)

Vậy: \(x=-\dfrac{7}{2}\) hoặc \(x=\dfrac{7}{2}\)

===========

2. \(x^2+36=12x\)

\(\Leftrightarrow x^2-12x+36=0\)

\(\Leftrightarrow\left(x-6\right)^2=0\)

\(\Leftrightarrow x=6\)

Vậy: \(x=6\)

===========

3. \(10\left(x-5\right)-8x\left(5-x\right)=0\)

\(\Leftrightarrow10\left(x-5\right)+8x\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(10+8x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\Leftrightarrow x=5\\10+8x=0\Leftrightarrow x=-\dfrac{5}{4}\end{matrix}\right.\)

Vậy: \(x=5\) hoặc \(x=-\dfrac{5}{4}\)

1: Ta có: \(4x^2-49=0\)

\(\Leftrightarrow\left(2x-7\right)\left(2x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

2: Ta có: \(x^2+36=12x\)

\(\Leftrightarrow x^2-12x+36=0\)

\(\Leftrightarrow\left(x-6\right)^2=0\)

\(\Leftrightarrow x-6=0\)

hay x=6

 

 

14 tháng 11 2021

Bài 1:

\(a,=3x\left(3xy+5y-1\right)\\ b,=\left(z-2\right)\left(3z-5\right)\\ c,=\left(x+2y\right)^2-4z^2=\left(x+2y+2z\right)\left(x+2y-2z\right)\\ d,=x^2-3x+5x-15=\left(x-3\right)\left(x+5\right)\)

Bài 2:

\(a,\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x+2-4x^2-12x=9\\ \Leftrightarrow4x^2+10x+7=0\\ \Leftrightarrow4\left(x^2+\dfrac{5}{2}x+\dfrac{25}{16}\right)+\dfrac{3}{4}=0\\ \Leftrightarrow4\left(x+\dfrac{5}{6}\right)^2+\dfrac{3}{4}=0\left(vô.lí\right)\\ \Leftrightarrow x\in\varnothing\\ c,\Leftrightarrow x^2-12x+36=0\\ \Leftrightarrow\left(x-6\right)^2=0\\ \Leftrightarrow x=6\)

29 tháng 11 2016

a, (2x-3)^2=(x+5)^2

2x-3=x+5

2x-3-x-5=0

x-8=0

x=8

b, x^2(x-1)-4x^2+8x-4=0

x^2(x-1)-(4x^2-8x+4)=0

x^2(x-1)-4(x^2-2x+1)=0

x^2(x-1)-4(x-1)^2=0

(x-1)(x^2-4)(x-1)=0

(x-1)(x-2)(x+2)(x-1)=0

=>x-1=0=>x=1

=>x-2=0=>x=2

=>x+2=0=>x=-2

=>x-1=0=>x=1

Vậy : x=1 ;x=2 và x=-2

c, (x-4)^2-36=0

(x-4)^2-6^2=0

(x-4-6)(x-4+6)=0

(x-10)(x+2)=0

=>x-10=0=>x=10

=>x+2=0=>x=-2

Vậy : x=10 và x=-2

k đúng cho mình nhé bạn !

a, 4x2 - 49 = 0

⇔⇔ (2x)2 - 72 = 0

⇔⇔ (2x - 7)(2x + 7) = 0

⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72

b, x2 + 36 = 12x

⇔⇔ x2 + 36 - 12x = 0

⇔⇔ x2 - 2.x.6 + 62 = 0

⇔⇔ (x - 6)2 = 0

⇔⇔ x = 6

e, (x - 2)2 - 16 = 0

⇔⇔ (x - 2)2 - 42 = 0

⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0

⇔⇔ (x - 6)(x + 2) = 0

⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2

f, x2 - 5x -14 = 0

⇔⇔ x2 + 2x - 7x -14 = 0

⇔⇔ x(x + 2) - 7(x + 2) = 0

⇔⇔ (x + 2)(x - 7) = 0

⇔{x+2=0x−7=0⇔{x=−2x=7