Tìm phương trình đường thẳng d biết rằng d đi qua 2 điểm phân biệt M (2;1) và N(5;-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(\left(d\right):y=ax+b\left(a\ne0\right)\) là đt cần tìm
\(N\left(5;-1\right)\text{ và }M\left(2;1\right)\in\left(d\right)\Leftrightarrow\left\{{}\begin{matrix}2a+b=1\\5a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{2}{3}\\b=\dfrac{7}{3}\end{matrix}\right.\\ \Leftrightarrow\left(d\right):y=-\dfrac{2}{3}x+\dfrac{7}{3}\)
a) Để (d) đi qua điểm A(1;3) thì \(3=2m.1+5\Rightarrow2m=-2\Rightarrow m=-1\)
b) Xét phương trình hoành độ giao điểm: \(x^2=2mx+5\)
\(\Rightarrow x^2-2mx-5=0\left(I\right)\)
Ta có \(\Delta'=m^2+5>0,\forall m\) nên PT (I) luôn có 2 nghiệm phân biệt \(x_1,x_2\) với mọi \(m\)
Vậy (d) luôn cắt (P) tại hai điểm phân biệt.
c) Áp dụng hệ thức Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-5\end{matrix}\right.\)
Để \(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow4m^2-2.\left(-5\right)=4\Leftrightarrow4m^2=-6\) (Vô lý)
Vậy không có m thỏa mãn ycbt.
Lời giải:
Vì $y_M=y_N=1$ nên đường thẳng đi qua 2 điểm $M,N$ có dạng $y=1$
gọi (d): y = ax + b (a # 0) là đường thẳng cần tìm
đường thẳng đi qua M(2; 1) và N(5; -1): \(\left\{{}\begin{matrix}2a+b=1\\5a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{2}{3}\\b=\dfrac{7}{3}\end{matrix}\right.\)
=> \(\left(d\right):=y=-\dfrac{2}{3}x+\dfrac{7}{3}\)