K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

 Đề bài có đủ điều kiện để tính. Sau khi xác định được tỷ lệ các cạnh tg ABC là a:b:c=5:4:3, đặt AB=3t, AC=4t; BC=5t (như bạn Hải đã chứng minh). Vì tam giác ABC vuông ta có AB^2=BH.BC ---> (3t)^2=BH.(5t) ---> BH=1,8.t 
----> AH^2=AB^2-BH^2 =(3t)^2 -(1,8t)^2 = 9t^2 -3,24t^2 =5,76t^2 --> AH= 2,4t 
Chu vi ABH=30 --> AB+BH+AH=30 --> 3t+1,8t+2,4t=30 --->7,2t=30 ---> t= 25/6 
Chu vi ABC= 3t+4t+5t= 12t =12.(25/6) =50 cm

Chúc huyền luôn luôn học giỏi và sớm kiếm được nhiều k.

2 tháng 11 2016

sai r á bạn, tại nó dư AH

3 tháng 11 2016

ò

3 tháng 7 2016

cách 1

Đề bài có đủ điều kiện để tính. Sau khi xác định được tỷ lệ các cạnh tg ABC là a:b:c=5:4:3, đặt AB=3t, AC=4t; BC=5t (như bạn Hải đã chứng minh). Vì tam giác ABC vuông ta có AB^2=BH.BC ---> (3t)^2=BH.(5t) ---> BH=1,8.t 
----> AH^2=AB^2-BH^2 =(3t)^2 -(1,8t)^2 = 9t^2 -3,24t^2 =5,76t^2 --> AH= 2,4t 
Chu vi ABH=30 --> AB+BH+AH=30 --> 3t+1,8t+2,4t=30 --->7,2t=30 ---> t= 25/6 
Chu vi ABC= 3t+4t+5t= 12t =12.(25/6) =50 cm

cách 2

Tam giác ABH và CAH vuông và có ^BAH=^C (cùng phụ với góc B) 
Nên Tam giác ABH và CAH đồng dạng (g-g) =>AB/AC = k (tỷ số đồng dạng) 
Mà C(ABH) / C(CAH) = k (tỷ số chu vi bằng tỷ số đồng dạng) 
suy ra 30/40 = k hay k = 3/4. 
do đó AB/AC = 3/4 hay AB/3 = AC/4 = t 
=> AB = 3t; AC = 4t Theo Pitago ta tính được BC = 5t. 
Vậy chu vi tam giác ABC là AB+AC+BC = 3t+4t+5t = 12t. 

 k mk nha!!^-^

22 tháng 5 2018

Sau khi xác định được tỷ lệ các cạnh tg ABC là a:b:c=5:4:3, đặt AB=3t, AC=4t; BC=5t . Vì tam giác ABC vuông ta có AB^2=BH.BC => (3t)^2=BH.(5t) => BH=1,8.t 
=> AH^2=AB^2-BH^2 =(3t)^2 -(1,8t)^2 = 9t^2 -3,24t^2 =5,76t^2 --> AH= 2,4t 
Chu vi ABH=30 --> AB+BH+AH=30 --> 3t+1,8t+2,4t=30 --->7,2t=30 ---> t= 25/6 
Chu vi ABC= 3t+4t+5t= 12t =12.(25/6) =50 cm
Đáp số : 50 cm

20 tháng 4 2021

undefined

10 tháng 3 2016

toán lớp mấy ?

2 tháng 5 2017

Chu vi tam giác ABC :

AHB + AHC = ABC

Thay số, ta được : 18+24 = 42 (cm)

Tam giác ABH và CAH vuông và có ^BAH=^C (cùng phụ với góc B) 
Nên Tam giác ABH và CAH đồng dạng (g-g) =>AB/AC = k (tỷ số đồng dạng) 
Mà C(ABH) / C(CAH) = k (tỷ số chu vi bằng tỷ số đồng dạng) 
suy ra 30/40 = k hay k = 3/4. 
do đó AB/AC = 3/4 hay AB/3 = AC/4 = t 
=> AB = 3t; AC = 4t Theo Pitago ta tính được BC = 5t. 
Vậy chu vi tam giác ABC là AB+AC+BC = 3t+4t+5t = 12t. 
 

28 tháng 3 2020

A B C H

Xét △AHB và △CHA có:

\(\widehat{AHB}=\widehat{CAB}=90^o\)

\(\widehat{ABH}=\widehat{CAH}\)(cùng phụ \(\widehat{HAB}\))

=> △AHB đồng dạng với △CHA (g.g)

=> \(\frac{AH}{CH}=\frac{AB}{CA}=\frac{AH+AB+HB}{CH+CA+HA}=\frac{18}{24}=\frac{3}{4}\left(1\right)\)

Xét △AHB và △CAB ta có:

\(\widehat{AHB}=\widehat{CAB}=90^o\)

\(\widehat{B}\)là góc chung

=> △AHB đồng dạng với △CAB (g.g)

=> \(\frac{AH}{CA}=\frac{AB}{CB}=\frac{AH+AB+HB}{CA+CB+AB}=\frac{18}{CA+CB+AB}\left(2\right)\)

Từ (1) ta đặt AB=3k, CA=4k. Xét △ABC vuông tại A

CB2=AB2+CA2=(3k)2+(4k)2=(5k)2

nên CB=5k. Do đó: \(\frac{AB}{CB}=\frac{3}{5}\)

Từ (2) => \(\frac{3}{5}=\frac{18}{P_{\text{△}ABC}}\)

Vậy \(P_{\text{△}ABC}=18\cdot\frac{5}{3}=30\left(cm\right)\)

28 tháng 3 2020

A B C H

    Gọi \(P_1,P_2,P_3\) lần lượt là chu vi của tam giác \(AHB;AHC;ABC\) ;

\(\Delta AHB\infty\Delta CHA\)suy ra

\(\frac{P_1}{P_2}=\frac{AB}{CA}\) (1)

Từ (1) , ta có:

\(\frac{AB}{AC}=\frac{18}{24}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)

\(\Leftrightarrow\frac{AB^2}{3^2}=\frac{AC^2}{4^2}=\frac{AB^2+AC^2}{3^2+4^2}=\frac{BC^2}{5^2}\)

\(\Leftrightarrow\frac{AB}{3}=\frac{AC}{4}=\frac{BC}{5}\Rightarrow AB:AC:BC=3:4:5\)

                      \(P_1:P_2:P_3=AB:AC:BC=3:4:5\)

Vậy nếu \(P_1=18cm,\) ,\(P_2=24cm\) thì \(P_3=30cm\) .

22 tháng 4 2016

đặt AB=3k,AC=4k,BC=5k (bộ ba Pitago)

cm tam giác AHB đồng dạng tam giác CAB (g-g)

ta có P AHB/P CAB=AB/BC=3k/5k=3/5 (tỉ số chu vi bằng tỉ số đồng dạng)

=> P BAC=(P AHB.5):3=(18.5):3=30cm

27 tháng 6 2021

Theo bài ra ta có 

AB + AH + BH = 30 

AC + CH + AH = 40

AB + BC + AC = 50 

Khi đó AB + AH + BH + AC + CH + AH = 70 

=> AB + AC + (BH + CH) + 2AH = 70

=> AB  + AC + BC + 2AH = 70

=> 50 + 2AH = 70

=> AH = 10

Vậy AH = 10 cm

11 tháng 4 2022

-△ABC∼△HBA (g-g) \(\Rightarrow\dfrac{P_{ABC}}{P_{HBA}}=\dfrac{BC}{BA}=\dfrac{20}{12}=\dfrac{5}{3}\Rightarrow\dfrac{AB}{BC}=\dfrac{3}{5}\) 

\(\Rightarrow AB=\dfrac{3}{5}BC\)

-△ABC vuông tại A có: \(AB^2+AC^2=BC^2\Rightarrow\dfrac{9}{25}BC^2+AC^2=BC^2\Rightarrow AC^2=\dfrac{16}{25}BC^2\Rightarrow AC=\dfrac{4}{5}BC\)

-△ABC∼△HAC (g-g)  \(\Rightarrow\dfrac{P_{ABC}}{P_{HAC}}=\dfrac{BC}{AC}=\dfrac{BC}{\dfrac{4}{5}BC}=\dfrac{5}{4}\Rightarrow\dfrac{20}{P_{HAC}}=\dfrac{5}{4}\Rightarrow P_{HAC}=\dfrac{20.4}{5}=16\left(cm\right)\)