K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2023

(5 - \(x\))(9\(x^2\) - 4) =0

\(\left[{}\begin{matrix}5-x=0\\9x^2-4=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=5\\9x^2=4\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=5\\x^2=\dfrac{4}{9}\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=5\\x=-\dfrac{2}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(x\) \(\in\) { - \(\dfrac{2}{3}\)\(\dfrac{2}{3}\)\(5\)}

 

24 tháng 5 2023

72\(x\)  + 72\(x\) + 3 = 344

72\(x\)  \(\times\) ( 1 + 73) = 344

72\(x\)  \(\times\) (1 + 343) = 344

72\(x\)  \(\times\) 344        = 344

72\(x\)                    = 344 : 344

72\(x\)                  = 1

72\(x\)                 =  70

\(2x\)                  = 0

\(x\)                   = 0

Kết luận: \(x\) = 0

a: \(\Leftrightarrow8x\left(x-3\right)\left(x+3\right)=0\)

hay \(x\in\left\{0;3;-3\right\}\)

b: \(\Leftrightarrow x^2-4x+4-x^2-2x+3=12\)

=>-6x=5

hay x=-5/6

21 tháng 7 2023

\(a,\sqrt{72x}\) xác định \(\Leftrightarrow72x\ge0\Leftrightarrow x\ge0\)

\(b,\dfrac{2x+3}{\sqrt{x^2-4}}\) xác định \(\Leftrightarrow x^2-4>0\Leftrightarrow\left(x-2\right)\left(x+2\right)>0\) 

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-2>0\\x+2>0\end{matrix}\right.\\\left[{}\begin{matrix}x-2< 0\\x+2< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x>2\\x>-2\end{matrix}\right.\\\left[{}\begin{matrix}x< 2\\x< -2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -2\end{matrix}\right.\)

\(c,\sqrt{\left(2x+1\right)\left(x+2\right)}\) xác định \(\Leftrightarrow\left(2x+1\right)\left(x+2\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}2x+1\ge0\\x+2\ge0\end{matrix}\right.\\\left[{}\begin{matrix}2x+1\le0\\x+2\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-\dfrac{1}{2}\\x\ge-2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-\dfrac{1}{2}\\x\le-2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge-\dfrac{1}{2}\\x\le-2\end{matrix}\right.\)

\(d,3-\sqrt{16x^2-1}\) xác định \(\Leftrightarrow16x^2-1\ge0\Leftrightarrow\left(4x-1\right)\left(4x+1\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}4x-1\ge0\\4x+1\ge0\end{matrix}\right.\\\left[{}\begin{matrix}4x-1\le0\\4x+1\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge\dfrac{1}{4}\\x\ge-\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}x\le\dfrac{1}{4}\\x\le-\dfrac{1}{4}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{1}{4}\\x\le-\dfrac{1}{4}\end{matrix}\right.\)

\(e,\sqrt{\dfrac{3+x}{4-x}}\) xác định \(\Leftrightarrow\left[{}\begin{matrix}3+x\ge0\\4-x>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge-3\\x>4\end{matrix}\right.\) \(\Leftrightarrow x>4\)

 

NV
31 tháng 1 2021

1.

Do 3 nghiệm lập thành cấp số cộng \(\Rightarrow2x_2=x_1+x_3\)

Mà \(x_1+x_2+x_3=3m\)

\(\Rightarrow3x_2=3m\Rightarrow x_2=m\)

Thay lại pt ban đầu:

\(m^3-3m^3+2m\left(m-4\right)m+9m^2-m=0\)

\(\Leftrightarrow m^2-m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

- Với \(m=0\Rightarrow x^3=0\Rightarrow\) pt có đúng 1 nghiệm (ktm)

- Với \(m=1\Rightarrow x^3-3x^2-6x+8=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=1\\x=4\end{matrix}\right.\) (thỏa mãn)

Vậy \(m=1\)

23 tháng 10 2019

cái này là tìm x phải ko bn

a)273-72x=0

-72x=273

=>x=273/-72

x=-273,375

b)=>(x+2)2=6.(x+2)

(x+2)2/(x+2)=6

(x+2)=6

vậy x =6-2=4

18 tháng 10 2017

\(7^{2x}+7^{2x+2}=2450\)
\(7^{2x}+7^{2x}.7^2=2450\)
\(7^{2x}+7^{2x}.49=2450\)
\(7^{2x}\left(1+49\right)=2450\)
\(7^{2x}.50=2450\)
\(7^{2x}=2450:50\)
\(7^{2x}=49\)
\(7^{2x}=7^2\)
\(2x=2\)
=> \(x=1\)
Vậy \(x=1\)

18 tháng 10 2017

Hỏi đáp Toán

14 tháng 2 2020

Tìm giá trị nhỏ nhất của đa thức g(x)=16x4-72x2+90

 Ta có:

g(x)=16x4−72x2+90

=(4x2)2−2.4x2.9+92+9

=(4x2−9)2+9

Với mọi giá trị của x ta có: (4x2−9)2​≥0

⇒g(x)=(4x2−9)2+9≥9

Dấu "=" xảy ra khi ⇔(4x2-9)2=0⇔x=± \(\frac{3}{2}\)

Vậy GTNN của đa thức \(g\left(x\right)\)là 9 tại x=\(\pm\frac{3}{2}\)

14 tháng 2 2020

4x2 nghĩa là4x2nha mấy cái khác cũng v