tìm GTLN
a) A= 5x-x^2
b) B= x-x^2
c) C= 4x-x^2+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có:
\(A=4-x^2+2x=-\left(x^2-2x-4\right)=-\left(x^2-2x+1+3\right)\)
\(=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3\forall x\)
Vậy MaxA=-3 khi x=1
b) Ta có: \(B=4x-x^2=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)=-\left(x-2\right)^2+4\le4\forall x\)Vậy MaxB=4 khi x=2
\(x^5-4x^3-5x\)
\(=x\left(x^4-4x^2-5\right)\)
\(=x\left(x^4-5x^2+x^2-5\right)\)
\(=x\left[x^2\left(x^2-5\right)+\left(x^2-5\right)\right]\)
\(=x\left(x^2+1\right)\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)\)
a/
\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2.\)
=>\(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2-2\left(ac\right)^2\)
=>\(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ac\right)^2-4\left(ca\right)^2\)
áp dụng hằng đẳng thức \(a^2-b^2-c^2=a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ac\right)^2\) ta đc
\(\left(a^2-b^2+c^2\right)-4\left(ac\right)^2\)
=> \(\left(a^2-b^2+c^2-2ac\right)\left(a^2-b^2+c^2+2ac\right)\)
b: Ta có: \(\left(2x+7\right)^2=9\left(x+2\right)^2\)
\(\Leftrightarrow\left(3x+4-2x-7\right)\left(3x+4+2x+7\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(5x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{5}\end{matrix}\right.\)
c: ta có: \(\left(x+2\right)^2=9\left(x^2-4x+4\right)\)
\(\Leftrightarrow\left(3x-6\right)^2-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(3x-6-x-2\right)\left(3x-6+x+2\right)=0\)
\(\Leftrightarrow\left(2x-8\right)\left(4x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\)
a: \(B=1-\sqrt{\left(x-1\right)^2+1}\)
(x-1)^2+1>=1
=>\(\sqrt{\left(x-1\right)^2+1}>=1\)
=>\(B< =0\)
Dấu = xảy ra khi x=1
b:
ĐKXĐ: -(x+2)^2+2>=0
=>-(x+2)^2>=2
=>(x+2)^2<=2
=>\(-\sqrt{2}-2< =x< =\sqrt{2}-2\)
\(-x^2+4x-2=-\left(x^2-4x+2\right)\)
\(=-\left(x^2-4x+4-2\right)=-\left(x-2\right)^2+2< =2\)
=>\(0< =\sqrt{4x-x^2-2}< =\sqrt{2}\)
=>1<=C<=căn 2+1
\(C_{max}=\sqrt{2}+1\Leftrightarrow x=2\)
a) \(x^2+4x+4-y^2\)
\(=\left(x^2+2.x.2+2^2\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2+y\right)\left(x+2-y\right)\)
\(a,=\left(x+2\right)^2-y^2=\left(x-y+2\right)\left(x+y+2\right)\\ b=\left(x-2y\right)^2-16=\left(x-2y-4\right)\left(x-2y+4\right)\\ c,=x\left(x^2+2xy+y^2\right)=x\left(x+y\right)^2\\ d,=5\left(x+y\right)-\left(x+y\right)^2=\left(5-x-y\right)\left(x+y\right)\\ e,=x^4\left(x-1\right)+x^2\left(x-1\right)\\ =x^2\left(x^2+1\right)\left(x-1\right)\)
a, \(-4x+5+2x-1=3\Leftrightarrow-2x=-1\Leftrightarrow x=\dfrac{1}{2}\)
b, \(-2x+2=2\Leftrightarrow x=0\)
c, \(-2x-6=-8\Leftrightarrow x=1\)
Mấy câu dễ mình làm trước nhé. Mấy câu khó hơn mình trình bày sau :)
1) 2x2 - 5xy - 3y2 = 2x2 + xy - 6xy - 3y2 = x( 2x + y ) - 3y( 2x + y ) = ( 2x + y )( x - 3y )
2) 7x2 + 3xy - 10y2 = 7x2 - 7xy + 10xy - 10y2 = 7x( x - y ) + 10y( x - y ) = ( x - y )( 7x + 10y )
3) x2 + 5x - 2 = ( x2 + 5x + 25/4 ) - 33/4 = ( x + 5/2 )2 - \(\left(\frac{\sqrt{33}}{2}\right)^2\)= \(\left(x+\frac{5}{2}-\frac{\sqrt{33}}{2}\right)\left(x+\frac{5}{2}+\frac{\sqrt{33}}{2}\right)\)
6) x4 + 324 = ( x4 + 36x2 + 324 ) - 36x2 = ( x2 + 18 )2 - ( 6x )2 = ( x2 - 6x + 18 )( x2 + 6x + 18 )
4) x8 + x7 + 1
= x8 + x7 + x6 - x6 + 1
= x6( x2 + x + 1 ) - ( x6 - 1 )
= x6( x2 + x + 1 ) - ( x3 - 1 )( x3 + 1 )
= x6( x2 + x + 1 ) - ( x - 1 )( x2 + x + 1 )( x3 + 1 )
= ( x2 + x + 1 )( x6 - ( x - 1 )( x3 + 1 ) ]
= ( x2 + x + 1 )( x6 - x4 + x3 - x + 1 )
5) x7 + x5 + 1
= x7 + x6 - x6 + x5 + 1
= x5( x2 + x + 1 ) - ( x6 - 1 )
= x5( x2 + x + 1 ) - ( x3 - 1 )( x3 + 1 )
= x5( x2 + x + 1 ) - ( x - 1 )( x2 + x + 1 )( x3 + 1 )
= ( x2 + x + 1 )[ x5 - ( x - 1 )( x3 + 1 ) ]
= ( x2 + x + 1 )( x5 - x4 + x3 - x + 1 )
7) x5 - 5x3 + 4x
= x5 - x3 - 4x3 + 4x
= x3( x2 - 1 ) - 4x( x2 - 1 )
= ( x2 - 1 )( x3 - 4x )
= ( x - 1 )( x + 1 )x( x2 - 4 )
= x( x - 1 )( x + 1 )( x - 2 )( x + 2 )
8) Xin hàng :)
\(x^5-4x^3-5x=x^5+x^3-5x^3-5x=x^3\left(x^2+1\right)-5x\left(x^2+1\right)=\left(x^2+1\right)\left(x^3-5x\right)\)
ko biết