K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

1) Ta có:

2n+16 chia hết cho 2n+1 

Suy ra (2n+1)+15 chia hết cho 2n+1

Suy ra 15 chia hết cho 2n+1 (vì 2n+1 chia hết cho 2n+1)

Suy ra 2n+1 thuộc Ư(15) bằng {1;3;5;15}

2n+1 bằng 1 suy ra n bằng 0

2n+1 bằng 3 suy ra n bằng 1

2n+1 bằng 5 suy ra n bằng 2

2n+1 bằng 15 suy ra n bằng 7

Vậy n thuộc {0;1;2;7}

2) Ta có:

4n+7 chia hết cho 2n+1

Suy ra 2(2n+1)+5 chia hết cho 2n+1

Suy ra 5 chia hết cho 2n+1 (vì 2(2n+1) chia hết cho 2n+1)

Suy ra 2n+1 thuộc Ư(5) bằng {1;5}

2n+1 bằng 1 suy ra n bằng 0

2n+1 bằng 5 suy ra n bằng 2

Vậy n thuộc {0;2}

18 tháng 9 2018

1)n=0;1;2;7

2)n=0;2

11:

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>(n+8)(n-8) chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc Ư(65)

=>n^2+1 thuộc {1;5;13;65}

=>n^2 thuộc {0;4;12;64}

mà n là số tự nhiên

nên n thuộc {0;2;8}

Thử lại, ta sẽ thấy n=8 không thỏa mãn

=>\(n\in\left\{0;2\right\}\)

4 tháng 9 2023

cảm on ha

8 tháng 10 2017

a) (n+2) \(⋮\) (n-1)

vì (n-1)\(⋮\) (n-1)

=>(n+2)-(n-1)\(⋮\left(n-1\right)\)

=>(n+2-n+1)\(⋮\) (n-1)

=> 3\(⋮\) (n-1)

=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}

ta có bảng

n-1 -1 1 -3

3

n 0 2 -2 4
loại

vậy n\(\in\) { 0;2;4}

8 tháng 10 2017

b) \(\left(2n+7\right)⋮\left(n+1\right)\)

\(\left(n+1\right)⋮\left(n+1\right)\)

=>\(2\left(n+1\right)⋮\left(n+1\right)\)

=> \(\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)

=>\(5⋮\left(n+1\right)\)

=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

TA CÓ BẢNG

n+1 -5 -1 1 5
n -6 -2 0 4
loại loại

vậy \(n\in\left\{0;4\right\}\)

a, 

Ta có: 4n-5 chia hết cho 2n-1

=>4n-2-3 chia hết cho 2n-1

=>2.(2n-1)-3 chia hết cho 2n-1

=>3 chia hết cho 2n-1

=>2n-1=Ư(3)=(-1,-3,1,3)

=>2n=(0,-2,2,4)

=>n=(0,-1,1,2)

Vậy n=0,-1,1,2

AH
Akai Haruma
Giáo viên
22 tháng 12 2022

Lời giải:
a.

$2n+7\vdots n+2$

$\Rightarrow 2(n+2)+3\vdots n+2$
$\Rightarrow 3\vdots n+2$

$\Rightarrow n+2\in\left\{1;3\right\}$ (do $n+2>0$ với $n$ là số
 tự nhiên)

$\Rightarrow n\in\left\{-1;1\right\}$

Vì $n$ là số tự nhiên nên $n=1$
b.

$4n-5\vdots 2n-1$

$\Rightarrow 2(2n-1)-3\vdots 2n-1$

$\Rightarrow 3\vdots 2n-1$

$\Rightarrow 2n-1\in\left\{1;-1;3;-3\right\}$

$\Rightarrow n\in\left\{1;0; 2; -1\right\}$

Do $n$ là số tự nhiên nên $n\in\left\{1;0;2\right\}$

1 tháng 10 2016

Viết thế này dễ nhìn nefk (n+2)/(n-1) =(n-1+3)/(n-1) 
=1+3/(n-1) vì n+2 chia cho n-1 =1 dư 3/(n-1) 
để n+2 chia hết cho n-1 thì 3/(n-1) là số nguyên 
3/(n-1) nguyên khi (n-1) là Ước của 3 
khi (n-1) ∈ {±1 ; ±3} 
xét TH thôi : 
n-1=1 =>n=2 (tm) 
n-1=-1=>n=0 (tm) 
n-1=3=>n=4 (tm) 
n-1=-3=>n=-2 (loại) vì n ∈N 
Vậy tại n={0;2;4) thì n+2 chia hết cho n-1 
--------------------------------------... 
b, (2n+7)/(n+1)=(2n+2+5)/(n+1)=[2(n+1)+5]/(... 
2n+7 chia hêt cho n+1 khi 5/(n+1) là số nguyên 
khi n+1 ∈ Ước của 5 
khi n+1 ∈ {±1 ;±5} mà n ∈N => n ≥0 => n+1 ≥1 
vậy n+1 ∈ {1;5} 
Xét TH 
n+1=1=>n=0 (tm) 
n+1=5>n=4(tm) 
Vâyj tại n={0;4) thì 2n+7 chia hêt scho n+1 

d))Vì 3n chia hết cho 5-2n 
=>2.3n+3(5-2n)=15 chia hết cho 5-2n 
=>5-2n thuộc Ư(15)={±1;±3;±5;±15} 
Mặt khác:5-2n≤5(do n≥0) 
=>5-2n thuộc {-15;-5;-3;-1;1;3;5} 
=>n thuộc {10;5;4;3;2;1;0} 
)Vì 3n chia hết cho 5-2n 
=>2.3n+3(5-2n)=15 chia hết cho 5-2n 
=>5-2n thuộc Ư(15)={±1;±3;±5;±15} 
Mặt khác:5-2n≤5(do n≥0) 
=>5-2n thuộc {-15;-5;-3;-1;1;3;5} 
=>n thuộc {10;5;4;3;2;1;0} 

1 tháng 10 2016

bạn có thể làm theo cách khác ko vì mình chưa học tới số nguyên hay ước và bội

17 tháng 8 2016

a) n + 2 chia hết cho n - 1

=> n - 1 + 3 chia hết cho n - 1

Do n - 1 chia hết cho n - 1 => 3 chia hết cho n - 1

Mà n thuộc N => n - 1 > hoặc = -1

=> n - 1 thuộc {-1 ; 1 ; 3}

=> n thuộc {0 ; 2 ; 4}

Những câu còn lại lm tương tự

17 tháng 8 2016

Giải:

a) \(n+2⋮n-1\)

\(\Rightarrow\left(n-1\right)+3⋮n-1\)

\(\Rightarrow3⋮n-1\)

\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)

+) \(n-1=1\Rightarrow n=2\)

+) \(n-1=-1\Rightarrow n=0\)

+) \(n-1=3\Rightarrow n=4\)

+) \(n-1=-3\Rightarrow n=-2\)

Vậy \(n\in\left\{2;0;4;-2\right\}\)

b) \(2n+7⋮n+1\)

\(\Rightarrow\left(2n+2\right)+5⋮n+1\)

\(\Rightarrow2\left(n+1\right)+5⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)

+) \(n+1=1\Rightarrow n=0\)

+) \(n+1=-1\Rightarrow n=-2\)

+) \(n+1=3\Rightarrow n=2\)

+) \(n+1=-3\Rightarrow n=-4\)

Vậy \(n\in\left\{0;-2;2;-4\right\}\)

5 tháng 7 2018

Vì 3 n chia hết cho (5-2n)

=>2.3n+3(5-2n)=15 chia hết cho 5-2n

=>5-2n thuộc Ư(15)={1,3,5,15,-1,-3-5-15}

Mặt khác 5-2n nhỏ hơn hoặc bằng 5

5-2n thuộc {-15,-5,-3,-1,1,3,5}

=>N thuộc { 10,5,4,3,2,1,0}

Vì 3n chia hết cho 5-2n

=>2.3n+3(5-2n)=15 chia hết cho 5 - 2n

=> 5-2n thuộc U (15)€{1,3,5,15,-1,-3,-5,-15}

Mặt khác 5 trừ 2 n nhỏ hơn hoặc bằng 5

=>5-2n€{-15,-5,-3,-1,1,3,5}

=>N€{10,5,4,3,2,1,0}

21 tháng 12 2020

biết rồi