2/3.5 +2/5.7 +2/7.9 +..+2/x.(x+2)=32/99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = 2 / 3.5 + 2 / 5.7 + 2 / 7.9 +...+2 / 97.99
M = 5 - 3 / 3 . 5 + 7 - 5 / 5 .7 + 9 - 7 / 7 . 9 +...+ 99 - 97 / 97 .99
M = 1/3 - 1/5 + 1/5 - 1/7 + 1/7 -1/9 +...+ 1/97 - 1/99
M = 1/3 - 1/99
M = 33 /99 - 1/99
M = 32/99
vậy M= 32/99
Ta có: \(\frac{2}{3.5}=\frac{5-3}{3.5}=\frac{5}{3.5}-\frac{3}{3.5}=\frac{1}{3}-\frac{1}{5}\)
\(\frac{2}{5.7}=\frac{7-5}{5.7}=\frac{7}{5.7}-\frac{5}{5.7}=\frac{1}{5}-\frac{1}{7}\)
..................................................................
\(\frac{2}{97.99}=\frac{99-97}{97.99}=\frac{99}{97.99}-\frac{97}{97.99}=\frac{1}{97}-\frac{1}{99}\)
Vậy \(M=\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{95.97}+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\left(\frac{1}{5}-\frac{1}{5}\right)-\left(\frac{1}{7}-\frac{1}{7}\right)-...-\left(\frac{1}{95}-\frac{1}{95}\right)-\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
=\(\frac{1}{3}-\frac{1}{99}\)
=\(\frac{33}{99}-\frac{1}{99}\)
=\(\frac{23}{99}\)
1/3.5+1/5.7+1/7.9+...+1/(2x+1)(2x+3)=5/31
1/2(2/3.5+2/5.7+2/7.9+...+2/(2x+1)(2x+3))=5/31
1/3-1/5+1/5-1/7+1/7-1/9+...+1/2x+1-1/2x+3=5/31:1/2
1/3-1/2x+3=10/31
1/2x+3=1/3-10/31
1/2x+3=1/63
suy ra : 2x+3=63
2x=63-3
2x=60
x=60:2
x=30
vay x=30
nhớ **** cho mình nha
\(=2x+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{9}-\frac{1}{11}=-\frac{2016}{2017}\)
\(=2x+\frac{1}{3}-\frac{1}{11}=-\frac{2016}{2017}\)
\(2x+\frac{8}{33}=-\frac{2016}{2017}\)
\(2x=\frac{-2016}{2017}-\frac{8}{33}\)
\(2x=\frac{-2024}{2017}\)
\(x=-\frac{1012}{2017}\)
\(2x+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}=\frac{-2016}{2017}\)
\(2x+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}=\frac{-2016}{2017}\)
\(2x+\frac{1}{3}-\frac{1}{11}=\frac{-2016}{2017}\)
\(2x+\frac{8}{33}=\frac{-2016}{2017}\)
\(2x=\frac{-2016}{2017}-\frac{8}{33}\)
Số dư dài quá. Đến đây bạn tự làm tiếp nhé
Đặt A=\(\dfrac{2}{3.5}.\dfrac{2}{7.9}.....\dfrac{2}{99.101}\)
A=\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
A=\(\dfrac{1}{3}-\dfrac{1}{101}=\dfrac{98}{303}\)
Ta có: \(P=\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\)
\(=\dfrac{1}{3}-\dfrac{1}{15}\)
\(=\dfrac{4}{15}\)
Bài làm:
Ta có: Đặt \(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(A=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}>\frac{32}{100}=32\%\)
=> Biểu thức trên > 32%
=> đpcm
Dạ đề nghị bạn Vũ Ngọc Tuấn không spam linh tinh lên bài làm nữa nhé!
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
~ Hok tốt ~
\(\)
Sửa đề: \(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{32}{99}\)
=>\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+2}=\dfrac{32}{99}\)
=>\(\dfrac{1}{3}-\dfrac{1}{x+2}=\dfrac{32}{99}\)
=>\(\dfrac{1}{x+2}=\dfrac{1}{3}-\dfrac{32}{99}=\dfrac{1}{99}\)
=>x+2=99
=>x=97