K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2018

Cho đường tròn (O;R) , đường kionhs AB. lấy điểm M trên OA, đường thẳng qua M vuông góc với AB cắt đg tròn (O) tại C. gọi D là điểm chính giữa của cung AB. xác định M để diện tích MCD lớn nhất

25 tháng 3 2017

infilyti + infilyty = infility

28 tháng 10 2023

a: PM\(\perp\)MQ

MQ\(\perp\)AB

Do đó: PM//AB

Xét tứ giác PMIO có

IO//MP

\(\widehat{PMI}=90^0\)

Do đó: PMIO là hình thang vuông

b: ΔMPQ vuông tại M

=>ΔMPQ nội tiếp đường tròn đường kính PQ

mà ΔMPQ nội tiếp (O)

nên O là trung điểm của PQ

=>P,Q,O thẳng hàng

c: ΔAOC vuông tại O

=>\(OA^2+OC^2=AC^2\)

=>\(R^2+R^2=\left(a\sqrt{2}\right)^2=2a^2\)

=>\(R=a\)

Kẻ OH\(\perp\)AC

=>d(O;AC)=OH

Xét ΔOAC vuông tại O có OH là đường cao

nên \(OH\cdot AC=OA\cdot OC\)

=>\(OH\cdot a\sqrt{2}=a\cdot a=a^2\)

=>\(OH=\dfrac{a}{\sqrt{2}}\)

Vậy: Khoảng cách từ O đến AC là \(\dfrac{a\sqrt{2}}{2}\)

c: O là trung điểm của AB

=>OA=OB=R

I là trung điểm của OA

=>OI=OA=0,5R

=>IB=1,5R

ΔIHA đồng dạng với ΔIBM

=>IH/IB=IA/IM

=>IH=3R/8

9 tháng 5 2023

em cảm ơn