tìm BCNN của 40,28 và 140
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 150x2=300 mà 300 chia hết cho cả 30 và 150 suy ra BCNN(50,150)=300
b. 140x2=280 mà 280 chia hết cho 40,28 và 140 suy ra BCNN(40,28,140)=280
c. 200x3=600 mà 600 chia hết cho 100,120,200 suy ra BCNN(100,120,200)=600
a: UC(56;140;84)={1;2;4;7;14;28}
BC(56;140;84)={420;840;...}
b: UCLN(56;140;84)=28
BCNN(56;140;84)=420
- Gọi ƯCLN (a;b) = c ⇒ a = cm ; b = cn . Sao cho ƯCLN (m;n) = 1
⇒ BCNN (a;b) = c.m.n = 140 . TH1
Mà a - b = 7 ⇒ c.m - c.n
⇒ c.(m - n) = 7 . TH2
- Từ TH1 và TH2 ta có :
c.m.n = 140
c.(m - n) = 7
⇒ c ∈ ƯC (7;140) = { 1;7 }
• Với c = 1
⇒ m.n = 140 ; m - n = 7
→ Loại.
• Với c = 7
⇒ m.n = 20 ; m - n = 1
⇒ m = 5 ; n = 4 ⇒ a = 35 ; b= 28
Vậy (a;b) thỏa mãn : (35;28)
- Gọi ƯCLN (a;b) = c ⇒ a = cm ; b = cn . Sao cho ƯCLN (m;n) = 1
⇒ BCNN (a;b) = c.m.n = 140 . TH1
Mà a - b = 7 ⇒ c.m - c.n
⇒ c.(m - n) = 7 . TH2
- Từ TH1 và TH2 ta có :
c.m.n = 140
c.(m - n) = 7
⇒ c ∈ ƯC (7;140) = { 1;7 }
• Với c = 1
⇒ m.n = 140 ; m - n = 7
→ Loại.
• Với c = 7
⇒ m.n = 20 ; m - n = 1
⇒ m = 5 ; n = 4 ⇒ a = 35 ; b= 28
Vậy (a;b) thỏa mãn :
(35;28)
a) ta có:
80=24. 5 140=22.5.7
Thừa số nguyên tố chung là 2,5. Thừa số nguyên tố riêng là 7
Vậy BCNN(80,140)= 24.5.7= 560
b) ta có:
42=2.3.7
120=23.3.5
Thừa số nguyên tố chung là 2,3. Thừa số nguyên tố riêng 7,5
Vậy BCNN(42,120)=23.3.5.7=840
a) 18 và 42
\(18=2.3^2\)
\(42=2.3.7\)
\(\Rightarrow BCNN\left(18,42\right)=2.3^2.7=126\)
\(BC\left(18,42\right)=B\left(126\right)=\left(0,126,252,378,504,...\right)\)
Vậy ...
Ta có:
\(40=2^3.5\\ 28=2^2.7\\ 140=2^2.5.7\\ \Rightarrow\text{BCNN}\left(40;28;140\right)=2^3.5.7=280\)
BCNN = 4