sin^3x+sinx.cos^2x-cosx/ 1-2sinx.cosx
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d/
\(\Leftrightarrow sinx.cosx\left(sin^2x-cos^2x\right)=\frac{\sqrt{2}}{8}\)
\(\Leftrightarrow2sinx.cosx\left(cos^2x-sin^2x\right)=-\frac{\sqrt{2}}{4}\)
\(\Leftrightarrow sin2x.cos2x=-\frac{\sqrt{2}}{4}\)
\(\Leftrightarrow\frac{1}{2}sin4x=-\frac{\sqrt{2}}{4}\)
\(\Leftrightarrow sin4x=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=-\frac{\pi}{4}+k2\pi\\4x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow x=...\)
c/
\(\Leftrightarrow\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}\right)cosx=2\left(sinx+\sqrt{3}cosx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+\sqrt{3}cosx=0\\sinx-\sqrt{3}cosx=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=0\\\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{3}\right)=0\\sin\left(x-\frac{\pi}{3}\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=k\pi\\x-\frac{\pi}{3}=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
b/
\(sin^23x-cos^24x=sin^25x-cos^26x\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos6x-\frac{1}{2}-\frac{1}{2}cos8x=\frac{1}{2}-\frac{1}{2}cos10x-\frac{1}{2}-\frac{1}{2}cos12x\)
\(\Leftrightarrow cos6x+cos8x=cos10x+cos12x\)
\(\Leftrightarrow2cos7x.cosx=2cos11x.cosx\)
\(\Leftrightarrow cosx\left(cos11x-cos7x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos11x=cos7x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\11x=7x+k2\pi\\11x=-7x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{k\pi}{2}\\x=\frac{k\pi}{9}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{k\pi}{9}\end{matrix}\right.\)
d/
\(\Leftrightarrow2sin8x.cosx=cos\left(\frac{\pi}{2}-2x\right)+1-1-cos\left(\frac{\pi}{2}+4x\right)\) (hạ bậc vế phải)
\(\Leftrightarrow2sin8x.cosx=sin2x+sin4x\)
\(\Leftrightarrow2sin8x.cosx=2sin3x.cosx\)
\(\Leftrightarrow cosx\left(sin8x-sin3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin8x=sin3x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\8x=3x+k2\pi\\8x=\pi-3x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{k2\pi}{5}\\x=\frac{\pi}{11}+\frac{k2\pi}{11}\end{matrix}\right.\)
a. \(y'=3sin^2x.\left(sinx\right)'=3sin^2x.cosx\)
b. \(y'=3cos^2x.\left(cosx\right)'=-3cos^2x.sinx\)
c. \(y'=cosx.cos^2x+2cosx.\left(-sinx\right).sinx=cos^3x-2cosx.sin^2x\)
d. \(y=x^{\dfrac{1}{3}}+\left(x+1\right)^{\dfrac{2}{3}}\Rightarrow y'=\dfrac{1}{3}x^{-\dfrac{2}{3}}+\dfrac{2}{3}\left(x+1\right)^{-\dfrac{1}{3}}=\dfrac{1}{3\sqrt[3]{x^2}}+\dfrac{2}{3\sqrt[3]{x+1}}\)
\(I=\int\dfrac{dx}{1+\sqrt{x}}\)
Đặt \(\sqrt{x}=t\Rightarrow x=t^2\Rightarrow dx=2t.dt\)
\(\Rightarrow I=\int\dfrac{2t.dt}{1+t}=\int\left(2-\dfrac{2}{1+t}\right)dt=2t-2ln\left|1+t\right|+C\)
\(=2\sqrt{x}-2ln\left|1+\sqrt{x}\right|+C\)
2/
\(I=\int\dfrac{sinx.cos^3xdx}{1+sin^2x}=\int\dfrac{cos^3x.sinxdx}{2-cos^2x}\)
Đặt \(cosx=t\Rightarrow sinxdx=-dt\)
\(\Rightarrow I=\int\dfrac{t^3dt}{t^2-2}=\int\left(t+\dfrac{2t}{t^2-2}\right)dt=\int t.dt+\int\dfrac{2t.dt}{t^2-2}\)
\(=\int t.dt+\int\dfrac{d\left(t^2-2\right)}{t^2-2}=\dfrac{t^2}{2}+ln\left|t^2-2\right|+C\)
\(=\dfrac{cos^2x}{2}+ln\left|cos^2x-2\right|+C\)
a, (sinx + cosx)(1 - sinx . cosx) = (cosx - sinx)(cosx + sinx)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx-sinx=1-sinx.cosx\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx+sinx.cosx-1-sinx=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\\left(cosx-1\right)\left(sinx+1\right)=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=0\\cosx=1\\sinx=-1\end{matrix}\right.\)
b, (sinx + cosx)(1 - sinx . cosx) = 2sin2x + sinx + cosx
⇔ (sinx + cosx)(1 - sinx.cosx - 1) = 2sin2x
⇔ (sinx + cosx).(- sinx . cosx) = 2sin2x
⇔ 4sin2x + (sinx + cosx) . sin2x = 0
⇔ \(\left[{}\begin{matrix}sin2x=0\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+4=0\end{matrix}\right.\)
⇔ sin2x = 0
c, 2cos3x = sin3x
⇔ 2cos3x = 3sinx - 4sin3x
⇔ 4sin3x + 2cos3x - 3sinx(sin2x + cos2x) = 0
⇔ sin3x + 2cos3x - 3sinx.cos2x = 0
Xét cosx = 0 : thay vào phương trình ta được sinx = 0. Không có cung x nào có cả cos và sin = 0 nên cosx = 0 không thỏa mãn phương trình
Xét cosx ≠ 0 chia cả 2 vế cho cos3x ta được :
tan3x + 2 - 3tanx = 0
⇔ \(\left[{}\begin{matrix}tanx=1\\tanx=-2\end{matrix}\right.\)
d, cos2x - \(\sqrt{3}sin2x\) = 1 + sin2x
⇔ cos2x - sin2x - \(\sqrt{3}sin2x\) = 1
⇔ cos2x - \(\sqrt{3}sin2x\) = 1
⇔ \(2cos\left(2x+\dfrac{\pi}{3}\right)=1\)
⇔ \(cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}=cos\dfrac{\pi}{3}\)
e, cos3x + sin3x = 2cos5x + 2sin5x
⇔ cos3x (1 - 2cos2x) + sin3x (1 - 2sin2x) = 0
⇔ cos3x . (- cos2x) + sin3x . cos2x = 0
⇔ \(\left[{}\begin{matrix}sin^3x=cos^3x\\cos2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=cosx\\cos2x=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\cos2x=0\end{matrix}\right.\)
Đề bài sai bạn
Chắc đề bài đúng phải là \(\frac{1+2sinx.cosx}{sin^2x-cos^2x}=\frac{tanx+1}{tanx-1}\)
:v bn ns v là bn bik hết là dạng gì rr mà lm ko đc á :))
mik lm biếng quá mik chỉ nói cách làm thôi nha bạn
1) chia hai vế cho cos^2(x) \(\sqrt{3}tan^2x+\left(1-\sqrt{3}\right)tanx-1+\left(1-\sqrt{3}\right)\left(1+tan^2x\right)=0\)
đặt t = tanx rr giải thôi =D ( máy 570 thì mode5 3 còn máy 580 thì mode 9 2 2) :)))
2) cx làm cách tương tự chia 2 vế cho cos^2x
3) giữ vế trái bung vế phải ra
\(sin2x-2sin^2x=2-4sin^22x\)
đặt t = sin2x (-1=<t=<1)
4) đẩy sinx cosx qua trái hết
\(sinx\left(sin^2-1\right)-cosx\left(cos^2x+1\right)=0\)
\(sinx\left(-cos^2x\right)-cos\left(cos^2x+1\right)=0\)
\(-cos\left(sinxcosx+cos^2x+1\right)=0\)
cái vế đầu cosx=0 bn bik giả rr mà dễ ẹc à còn vế sau thì chia cho cos^2(x) như mấy bài trên rr sau đó đặt t = tanx rr bấm máy là ra thui :))
5)bung cái hằng đẳng thức ra sau đó đặt t=sinx+cosx (t thuộc [-căn(2) ; căn(2)]
khi đó ta có sinxcosx=1/2 sin2x= 1/2t^2 - 1/2
làm đi là ra à
\(\dfrac{sin^3x+sinx\cdot cos^2x-cosx}{1-2\cdot sinx\cdot cosx}\)
\(=\dfrac{sinx\left(sin^2x+cos^2x\right)-cosx}{\left(sinx-cosx\right)^2}\)
\(=\dfrac{sinx-cosx}{\left(sinx-cosx\right)^2}=\dfrac{1}{sinx-cosx}\)