(2x-1)^2+(2-x)(2x-1)=0
help me pl.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-2\right)\left(x-4\right)=0\)
\(=>2x-2=0;x-4=0\)
\(TH1:2x-2=0\)
\(2x=2\)
\(=>x=1\)
\(TH2:x-4=0\)
\(x=4\)
\(=>x\in\left\{1;4\right\}\)
\(\left(2x-1\right)\left(x-2\right)=0\)
\(=>2x-1=0;x-2=0\)
\(TH1:2x-1=0\)
\(2x=1\)
\(=>x=\frac{1}{2}\)
\(TH2;x-2=0\)
\(x=2\)
\(=>x\in\left\{\frac{1}{2};2\right\}\)
7.(x+2)-4.(x-1)=30
7x+14-4x+4=30
3x+18=30
3x=12
x=4
Vậy x=4
(2x -2).(x-4)=0
suy ra 2x-2=0 hoặc x-4=0
suy ra x=1 hoặc x=4
Vậy x=1 hoặc x=4
(2x -1).(x-2)=0
suy ra 2x-1=0 hoặc x-2=0
suy ra x=1/2 hoặc x=2
Vậy x=1/2 hoặc x=2
Câu a :
\(x^2-2x-3=0\)
\(\Leftrightarrow x^2-x+3x-3=0\)
\(\Leftrightarrow x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\Rightarrow x=1\\x+3=0\Rightarrow x=-3\end{matrix}\right.\)
Câu b :
\(2x^2+3=-5x\)
\(\Leftrightarrow2x^2+3+5x=0\)
\(\Leftrightarrow2x^2+2x+3x+3=0\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\Rightarrow x=-1\\2x+3=0\Rightarrow x=-\dfrac{3}{2}\end{matrix}\right.\)
Mấy câu sau khó quá ko bt làm :)
\(2x^2-2x=0\)
\(2x\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy......
a) \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)
\(\Leftrightarrow x-2=0\) (Vì: \(x^2+4x+6>0\) )
\(\Leftrightarrow x=2\)
b) \(2x^3+x^2-6x=0\)
\(\Leftrightarrow x\left(2x^2+x-6\right)=0\)
\(\Leftrightarrow x\left[\left(2x^2+4x\right)-\left(3x+6\right)\right]=0\)
\(\Leftrightarrow x\left[2x\left(x+2\right)-3\left(x+2\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+2=0\\2x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-2\\x=\frac{3}{2}\end{array}\right.\)
c) \(4x^2+4xy+x^2-2x+1+y^2=0\)
\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2=0\)
\(\Leftrightarrow\begin{cases}2x+y=0\\x-1=0\end{cases}\)\(\Leftrightarrow\begin{cases}y=-2\\x=1\end{cases}\)
vì \(x^4+2x^2+1=\left(x^2+1\right)^2\) mà \(x^2\ge0\Rightarrow x^2+1>0\Rightarrow\left(x^2+1\right)^2>0\)với mọi x.Nên x-3=0 .Từ đó suy ra x=3
\(x^4-2x^3+3x^2-2x+1=0\)
Chia cả hai vé cho \(x^2\)
\(\Leftrightarrow x^2-2x+3-\dfrac{2}{x}+\dfrac{1}{x^2}\)
\(\Leftrightarrow x^2+2+\dfrac{1}{x^2}-2\left(x+\dfrac{1}{x}\right)+1=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-2\left(x+\dfrac{1}{x}\right)+1=0\)
Đặt x+1/x = a, ta có:
\(a^2-2a+1=0\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow x+\dfrac{1}{x}=1\)
\(\Leftrightarrow x^2+1=x\)
\(\Leftrightarrow x^2-x+1=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)
Do \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+3>0\)
Do đó phương trình vô nghiệm
\(\left(2x-1\right)^2+\left(2-x\right)\left(2x-1\right)=0\)
=>\(\left(2x-1\right)\left(2x-1+2-x\right)=0\)
=>\(\left(2x-1\right)\left(1-x\right)=0\)
=>\(\left[{}\begin{matrix}2x-1=0\\1-x=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)