K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7

\(\dfrac{2020}{2019}=1+\dfrac{1}{2019}>1+\dfrac{1}{2024}=\dfrac{2025}{2024}\)

4
456
CTVHS
3 tháng 7

\(\dfrac{2020}{2019}=1+\dfrac{1}{2019}\)

\(\dfrac{2025}{2024}=1+\dfrac{1}{2024}\)

Vì \(\dfrac{1}{2019}>\dfrac{1}{2024}\) nên 

\(=>\dfrac{2020}{2019}>\dfrac{2025}{2024}\)

TH
Thầy Hùng Olm
Manager VIP
2 tháng 5 2023

B = \(1-\dfrac{1}{2025}\)   \(A=1-\dfrac{1}{2024}\)

Vì \(\dfrac{1}{2025}< \dfrac{1}{2024}\)

Nên B>A

2 tháng 5 2023

Ta có :

\(\dfrac{2023}{2024}\)=\(\dfrac{2024-1}{2024}\)=\(\dfrac{2024}{2024}\)-\(\dfrac{1}{2024}\)=1-\(\dfrac{1}{2024}\)

\(\dfrac{2024}{2025}\)=\(\dfrac{2025-1}{2025}\)=\(\dfrac{2025}{2025}\)-\(\dfrac{1}{2025}\)=1=\(\dfrac{1}{2025}\)

Ta thấy: \(\dfrac{1}{2024}\) lớn hơn \(\dfrac{1}{2025}\)

Nên : \(\dfrac{2023}{2024}\) lớn hơn \(\dfrac{2024}{2025}\)

⇒A lớn hơn B

 

3 tháng 5 2018

2020+2022/2022+2024 lớn hơn

3 tháng 5 2018

lm sao hở c ?

26 tháng 9 2023

\(\sqrt{2023+2025}=\sqrt{2.2024}\)

\(2\sqrt{2024}=\sqrt{4.2024}\)

\(\sqrt{2.2024}< \sqrt{4.2024}\)

=> \(\sqrt{2023+2025}< 2.\sqrt{2024}\)

26 tháng 9 2023

\(\sqrt{2023+2025}=\sqrt{2.2024}\\ 2\sqrt{2024}=\sqrt{4.2024}\\ \sqrt{2.2024}< \sqrt{4.2024}\\ \Rightarrow\sqrt{2023+2025< 2.\sqrt{2024}}\)

7 tháng 9 2023

1) Ta thấy:

\(4=1+3=1+\sqrt{9}\)

\(1+2\sqrt{2}=1+\sqrt{2^2\cdot2}=1+\sqrt{8}\)

Mà: \(\sqrt{8}< \sqrt{9}\)

\(\Rightarrow1+\sqrt{8}< 1+\sqrt{9}\)

\(\Rightarrow\dfrac{1}{1+\sqrt{8}}>\dfrac{1}{1+\sqrt{9}}\)

\(\Rightarrow\dfrac{1}{1+2\sqrt{2}}>\dfrac{1}{4}\)

2) Ta thấy:

\(2018< 2024\)

\(\Rightarrow\sqrt{2018}< \sqrt{2024}\) (1)

\(2025< 2026\)

\(\Rightarrow\sqrt{2025}< \sqrt{2026}\) (2)

Từ (1) và (2) ta có:

\(\sqrt{2018}+\sqrt{2025}< \sqrt{2024}+\sqrt{2026}\)

9 tháng 9 2019

B dau vay bn

9 tháng 9 2019

B = 2015 × 2025

26 tháng 7 2021

A<B

Ta có: \(A=\left(2020^{2019}+2019^{2019}\right)^{2020}\)

\(=\left(2019^{2019}+2020^{2019}\right)^{2019}\cdot\left(2019^{2019}+2020^{2019}\right)\)

\(\Leftrightarrow\dfrac{A}{B}=\dfrac{\left(2019^{2019}+2020^{2019}\right)^{2019}\cdot\left(2019^{2019}+2020^{2019}\right)}{\left(2020^{2020}+2019^{2020}\right)^{2019}}\)

\(\Leftrightarrow\dfrac{A}{B}=\dfrac{2019^{2019}+2020^{2019}}{2019+2020}>1\)

\(\Leftrightarrow A>B\)

5 tháng 5 2016

Ta thấy:2013/2024<1

             2014/2025<1

             2015/2013>1

Để 2013/2024+2014/2025+2015+2013 lớn hơn hoặc bằng 3 <=>2013/2024,2014/2025,2015/2013 lớn hơn hoặc bằng 1 hoặc nếu 2013/2024<1 và 2014/2025<1=>2015/2013 phải lớn hơn hoặc bằng 2

Mà 2013/2024<1,2014/2025<1,2015/2013<2

=>A<3

5 tháng 5 2016

cho biểu thức A = 2013/2014+2014/2015+2015/2013.hãy so sánh Avới 3

(nhớ nói cách làm nha.từng bước)