so sánh 2020/2019 và 2025/2024
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = \(1-\dfrac{1}{2025}\) \(A=1-\dfrac{1}{2024}\)
Vì \(\dfrac{1}{2025}< \dfrac{1}{2024}\)
Nên B>A
Ta có :
\(\dfrac{2023}{2024}\)=\(\dfrac{2024-1}{2024}\)=\(\dfrac{2024}{2024}\)-\(\dfrac{1}{2024}\)=1-\(\dfrac{1}{2024}\)
\(\dfrac{2024}{2025}\)=\(\dfrac{2025-1}{2025}\)=\(\dfrac{2025}{2025}\)-\(\dfrac{1}{2025}\)=1=\(\dfrac{1}{2025}\)
Ta thấy: \(\dfrac{1}{2024}\) lớn hơn \(\dfrac{1}{2025}\)
Nên : \(\dfrac{2023}{2024}\) lớn hơn \(\dfrac{2024}{2025}\)
⇒A lớn hơn B
\(\sqrt{2023+2025}=\sqrt{2.2024}\)
\(2\sqrt{2024}=\sqrt{4.2024}\)
\(\sqrt{2.2024}< \sqrt{4.2024}\)
=> \(\sqrt{2023+2025}< 2.\sqrt{2024}\)
\(\sqrt{2023+2025}=\sqrt{2.2024}\\ 2\sqrt{2024}=\sqrt{4.2024}\\ \sqrt{2.2024}< \sqrt{4.2024}\\ \Rightarrow\sqrt{2023+2025< 2.\sqrt{2024}}\)
1) Ta thấy:
\(4=1+3=1+\sqrt{9}\)
\(1+2\sqrt{2}=1+\sqrt{2^2\cdot2}=1+\sqrt{8}\)
Mà: \(\sqrt{8}< \sqrt{9}\)
\(\Rightarrow1+\sqrt{8}< 1+\sqrt{9}\)
\(\Rightarrow\dfrac{1}{1+\sqrt{8}}>\dfrac{1}{1+\sqrt{9}}\)
\(\Rightarrow\dfrac{1}{1+2\sqrt{2}}>\dfrac{1}{4}\)
2) Ta thấy:
\(2018< 2024\)
\(\Rightarrow\sqrt{2018}< \sqrt{2024}\) (1)
\(2025< 2026\)
\(\Rightarrow\sqrt{2025}< \sqrt{2026}\) (2)
Từ (1) và (2) ta có:
\(\sqrt{2018}+\sqrt{2025}< \sqrt{2024}+\sqrt{2026}\)
Ta có: \(A=\left(2020^{2019}+2019^{2019}\right)^{2020}\)
\(=\left(2019^{2019}+2020^{2019}\right)^{2019}\cdot\left(2019^{2019}+2020^{2019}\right)\)
\(\Leftrightarrow\dfrac{A}{B}=\dfrac{\left(2019^{2019}+2020^{2019}\right)^{2019}\cdot\left(2019^{2019}+2020^{2019}\right)}{\left(2020^{2020}+2019^{2020}\right)^{2019}}\)
\(\Leftrightarrow\dfrac{A}{B}=\dfrac{2019^{2019}+2020^{2019}}{2019+2020}>1\)
\(\Leftrightarrow A>B\)
Ta thấy:2013/2024<1
2014/2025<1
2015/2013>1
Để 2013/2024+2014/2025+2015+2013 lớn hơn hoặc bằng 3 <=>2013/2024,2014/2025,2015/2013 lớn hơn hoặc bằng 1 hoặc nếu 2013/2024<1 và 2014/2025<1=>2015/2013 phải lớn hơn hoặc bằng 2
Mà 2013/2024<1,2014/2025<1,2015/2013<2
=>A<3
\(\dfrac{2020}{2019}=1+\dfrac{1}{2019}>1+\dfrac{1}{2024}=\dfrac{2025}{2024}\)
\(\dfrac{2020}{2019}=1+\dfrac{1}{2019}\)
\(\dfrac{2025}{2024}=1+\dfrac{1}{2024}\)
Vì \(\dfrac{1}{2019}>\dfrac{1}{2024}\) nên
\(=>\dfrac{2020}{2019}>\dfrac{2025}{2024}\)