K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019

sao ko ai trả lời vậy

29 tháng 2 2020

Áp dụng BĐT Bunhiacopski ta có:

\(\frac{x}{x^3+y^2+z}=\frac{x\left(\frac{1}{x}+1+z\right)}{\left(x^3+y^2+z\right)\left(\frac{1}{x}+1+z\right)}\le\frac{1+x+xz}{\left(x+y+z\right)^2}=\frac{1+x+xz}{9}\)

Tương tự rồi cộng lại ta được:

\(T\le\frac{3+x+y+z+xy+yz+zx}{9}=\frac{6+xy+yz+zx}{9}\le\frac{6+\frac{\left(x+y+z\right)^2}{3}}{9}=1\)

Dấu "=" xảy ra tại \(x=y=z=1\)

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x -...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

5 tháng 6 2019

x3 + y3 = 2 ( z3 + t3 )

\(\Rightarrow\)x3 + y3 + z3 + t3 = 3 ( z3 + t3 )   \(⋮\)

Áp dụng bài toán : n \(\in\)Z thì n3 - n \(⋮\)3

Ta có : ( x3 - x ) + ( y3 - y ) + ( z3 - z ) + ( t3 - t ) \(⋮\)

hay ( x3 + y3 + z3 + t3 ) - ( x + y + z + t ) \(⋮\)3

Mà x3 + y3 + z3 + t3 \(⋮\)3 nên x + y + z + t \(⋮\)3

5 tháng 6 2019

thank you

2 tháng 6 2017

kết bạn đi !

2 tháng 6 2017

bạn tìm m bài toán như v ở đâu thế

27 tháng 2 2018

x^3+y^3 = 2.(z^3+t^3)

<=> x^3+y^3+z^3+t^3 = 3.(z^2+t^3) chia hết cho 3

Xét : x^3-x = x.(x^2-1) = (x-1).x.(x+1) chia hết cho 3 ( vì là tích 3 số nguyên liên tiếp )

Tương tự : y^3-y , z^3-z  và t^3-t đều chia hết cho 3

=> (x^3+y^3+z^3+t^3)-(x+y+z+t) chia hết cho 3

Mà x^3+y^3+z^3+t^3 chia hết cho 3

=> x+y+z+t chia hết cho 3

Tk mk nha

28 tháng 2 2018

cảm ơn bạn nhé

\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=0\)

=>\(\dfrac{yz+2xz+3xy}{xyz}=0\)

=>yz+2xz+3xy=0

=>\(xy+\dfrac{2}{3}xz+\dfrac{1}{3}yz=0\)

\(x+\dfrac{y}{2}+\dfrac{z}{3}=1\)

=>\(\left(x+\dfrac{y}{2}+\dfrac{z}{3}\right)^2=1\)

=>\(x^2+\dfrac{y^2}{4}+\dfrac{z^2}{9}+2\left(x\cdot\dfrac{y}{2}+x\cdot\dfrac{z}{3}+\dfrac{y}{2}\cdot\dfrac{z}{3}\right)=1\)

=>\(A+2\left(\dfrac{xy}{2}+\dfrac{xz}{3}+\dfrac{yz}{6}\right)=1\)

=>A+xy+2/3xz+1/3yz=1

=>A=1