K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

đánh lên mạng ak,nó có đó

15 tháng 2 2018

nói thật bạn trả lời bên dưới nha trả lời vậy trả lời làm cl.Mình đg tìm lời giải rên mạng mà cx phải lập cái nick góp y đó

DD
23 tháng 6 2021

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+3\left(x+y\right)^2-6xy+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+y\right)^2+x+y+2\right)-3xy\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left(x^2+y^2+2xy+x+y+2-3xy\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+2\right]=0\)

\(\Leftrightarrow x+y+2=0\)

\(\Leftrightarrow x+y=-2\)

\(M=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{-2}=-2\)

Dấu \(=\)khi \(x=y=-1\).

`#3107.101107`

`D = x^3 - y^3 - 3xy` biết `x - y - 1 = 0`

Ta có:

`x - y - 1 = 0`

`=> x - y = 1`

`D = x^3 - y^3 - 3xy`

`= (x - y)(x^2 + xy + y^2) - 3xy`

`= 1 * (x^2 + xy + y^2) - 3xy`

`= x^2+ xy + y^2 - 3xy`

`= x^2 - 2xy + y^2`

`= x^2 - 2*x*y + y^2`

`= (x - y)^2`

`= 1^2 = 1`

Vậy, với `x - y = 1` thì `D = 1`

________

`E = x^3 + y^3` với `x + y = 5; x^2 + y^2 = 17`

`x + y = 5`

`=> (x + y)^2 = 25`

`=> x^2 + 2xy + y^2 = 25`

`=> 2xy = 25 - (x^2 + y^2)`

`=> 2xy = 25 - 17`

`=> 2xy = 8`

`=> xy = 4`

Ta có:

`E = x^3 + y^3`

`= (x + y)(x^2 - xy + y^2)`

`= 5 * [ (x^2 + y^2) - xy]`

`= 5 * (17 - 4)`

`= 5 * 13`

`= 65`

Vậy, với `x + y = 5; x^2 + y^2 = 17` thì `E = 65`

________

`F = x^3 - y^3` với `x - y = 4; x^2 + y^2 = 26`

Ta có:

`x - y = 4`

`=> (x - y)^2 = 16`

`=> x^2 - 2xy + y^2 = 16`

`=> (x^2 + y^2) - 2xy = 16`

`=> 2xy = (x^2 + y^2) - 16`

`=> 2xy = 26 - 16`

`=> 2xy = 10`

`=> xy = 5`

Ta có:

`F = x^3 - y^3`

`= (x - y)(x^2 + xy + y^2)`

`= 4 * [ (x^2 + y^2) + xy]`

`= 4 * (26 + 5)`

`= 4*31`

`= 124`

Vậy, với `x - y = 4; x^2 + y^2 = 26` thì `F = 124.`

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Đề bài yêu cầu gì vậy em.

23 tháng 9 2021

\(a,x+y=1\Leftrightarrow\left(x+y\right)^3=1\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\\ \Leftrightarrow x^3+y^3+3xy\cdot1=1\Leftrightarrow x^3+y^3+3xy=1\)

\(b,x^3-y^3-3xy\\ =x^3-3x^2y+3xy^2-y^3-3xy+3x^2y-3xy^2\\ =\left(x-y\right)^3-3xy\left(x-y-1\right)\\ =1^3-3xy\left(1-1\right)=1-0=1\)

\(c,x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\\ =\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\\ =x^2-xy+y^2+3xy-6x^2y^2+6x^2y^2\\ =x^2+2xy+y^2=\left(x+y\right)^2=1\)

NV
23 tháng 7 2021

Đề là: \(P=x^3+y^3-\dfrac{x^2+y^2}{\left(x-1\right)\left(y-1\right)}\)

Hay \(P=\dfrac{x^3+y^3-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\) 

Cái nào em nhỉ?

23 tháng 7 2021

cái ở dưới ạ

Bài toán 3. Tìm x; y biết:a. . 25 – y2 = 8( x – 2009)b. x3 y = x y3  + 1997c. x + y + 9 = xy – 7.Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1...
Đọc tiếp

Bài toán 3. Tìm x; y biết:

a. . 25 – y2 = 8( x – 2009)

b. xy = x y3  + 1997

c. x + y + 9 = xy – 7.

Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.

Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x)2005

Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.

Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.

Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.

Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).

Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.

Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.

9
25 tháng 10 2021

:V lớp 6 mới đúng

25 tháng 10 2021

ahihi e ko bt 

5 tháng 9 2023

ck giúp mình với

 

Bài toán 3

a. 25 - y^2 = 8(x - 2009)

Ta có thể viết lại như sau:

y^2 - 8(x - 2009) + 25 = 0

Đây là phương trình bậc hai với hệ số thực.

Ta có thể giải phương trình này như sau:

y = (8x - 1607 ± √(8x - 1607)^2 - 4 * 1 * 25) / 2 y = (4x - 803 ± √(4x - 803)^2 - 200) / 2 y = 2x - 401 ± √(2x - 401)^2 - 100

Ta thấy rằng nghiệm của phương trình này là xấp xỉ 2009 và -2009.

Tuy nhiên, trong bài toán, x và y là số tự nhiên.

Vậy, nghiệm của phương trình này là x = 2009 và y = 0.

b. x^3 y = x y^3 + 1997

Ta có thể viết lại như sau:

x^3 y - x y^3 = 1997 x y (x^2 - y^2) = 1997 x y (x - y)(x + y) = 1997

Ta có thể thấy rằng x và y phải có giá trị đối nhau.

Vậy, nghiệm của phương trình này là x = y = 1997/2 = 998,5.

Tuy nhiên, trong bài toán, x và y là số tự nhiên.

Vậy, nghiệm của phương trình này là x = y = 998.

c. x + y + 9 = xy - 7

Ta có thể viết lại như sau:

x - xy + y + 16 = 0

Đây là phương trình bậc hai với hệ số thực.

Ta có thể giải phương trình này như sau:

x = (xy - 16 ± √(xy - 16)^2 - 4 * 1 * 16) / 2 x = (y - 4 ± √(y - 4)^2 - 64) / 2 x = y - 4 ± √(y - 4)^2 - 32

Ta thấy rằng nghiệm của phương trình này là xấp xỉ 8 và -8.

Tuy nhiên, trong bài toán, x và y là số tự nhiên.

Vậy, nghiệm của phương trình này là x = 8 và y = 12.

Bài toán 4

Ta có thể chứng minh bằng quy nạp.

Cơ sở

Khi n = 2, ta có:

x1.x2 + x2.x3 = 0

Vậy, x1.x2 + x2.x3 + ...+ xn.x1 = 0 khi n = 2.

Bước đệm

Giả sử rằng khi n = k, ta có:

x1.x2 + x2.x3 + ...+ xn.x1 = 0

Bước kết luận

Xét số tự nhiên n = k + 1.

Ta có:

x1.x2 + x2.x3 + ...+ xn.x1 = x1.x2 + x2.x3 + ...+ xn.x1 + xn.x1

Theo giả thuyết, ta có:

x1.x2 + x2.x3 + ...+ xn.x1 = 0

Vậy, xn.x1 = -(x1.x2 + x2.x3 + ...+ xn.x1) = 0.

Như vậy, ta có:

x1.x2 + x2.x3 + ...+ xn.x1   shareGoogle it
5 tháng 9 2023

???

bn lấy nó đâu ra dz batngo

29 tháng 8 2023

 a) Ta thấy \(xy=\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}=\dfrac{3^2-5}{2}=2\)

\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\) \(=3\left(5-2\right)=9\)

 b) Ta thấy \(xy=\dfrac{-\left(x-y\right)^2+\left(x^2+y^2\right)}{2}=\dfrac{15-5^2}{2}=-5\)

\(\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+y^2+xy\right)\) \(=5\left(15-5\right)=50\)