mình cần gấp ạ, tối nay mình cần nôpj r ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆AHB(<H=90°(gt)) và ∆AHC(<H=90°(gt)), ta có:
AB=AC(gt)
<B=<C(gt)
⟹∆AHB=∆AHC(c.h-g.n)
b) Xét ∆AHM(<M=90°(gt)) và ∆AHN(<N=90°(gt)), ta có:
AH cạnh chung
<MAH=NAH( vì ∆AHB=∆AHC(CM ở a))
⟹∆AHM=∆AHN(c.h-g.n)
⟹AM=AN ( 2 cạnh tương ứng)
⟹∆AMN cân tại A
c)Ta có: <M=<N=(180°-<A)/2
<B=<C=(180°-<A)/2
⟹ <M=<N=<B=<C
⟹<M=<B mà 2 góc này lại ở vị trí đồng vị
⟹MN//BC
Câu 3 :
\(n_{SO_3}=\dfrac{8}{80}=0.1\left(mol\right)\)
\(SO_3+H_2O\rightarrow H_2SO_4\)
\(0.1....................0.1\)
b) Cho quỳ tím vào => quỳ tím hóa đỏ
\(m_{H_2SO_4}=0.1\cdot98=9.8\left(g\right)\)
\(C_{M_{H_2SO_4}}=\dfrac{0.1}{0.25}=0.4\left(M\right)\)
\(\sqrt{2x+5}\) xác định khi \(2x+5\ge0\Rightarrow2x\ge-5\Rightarrow x\ge-\dfrac{5}{2}\)
\(\sqrt{2x+5}\le0\Leftrightarrow2x+5\le0\Leftrightarrow2x\le-5\Leftrightarrow x\ge\dfrac{-5}{2}\)
\(\Rightarrow\) Đáp án: A
ĐKXĐ: \(2x-3\ge0\\ \Rightarrow2x\ge0+3\\ \Rightarrow2x\ge3\\ \Rightarrow x\ge\dfrac{3}{2}\left(A\right)\)
\(\sqrt{3-2x}\) xác định khi \(3-2x\ge0\Rightarrow2x\le3-0\Rightarrow2x\le3\Rightarrow x\le\dfrac{3}{2}\left(D\right)\)
Bài 1:
a) Áp dụng tích chất dãy tỉ số bằng nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}\)=\(\dfrac{x+y}{2+3}\)=\(\dfrac{-15}{5}\)= -3
=> x= -3.2= -6; y= -3.3= -9.
b) Áp dụng tích chất dãy tỉ số bằng nhau:
\(\dfrac{x}{3}=\dfrac{y}{4}\)=\(\dfrac{x-y}{3-4}\)=\(\dfrac{12}{-1}\)= -12
=> x= -12.3= -36; y= -12.4= -48
c) 3x=7y=\(\dfrac{x}{7}=\dfrac{y}{3}\)
Áp dụng tích chất dãy tỉ số bằng nhau:
\(\dfrac{x}{y}=\dfrac{y}{3}=\dfrac{x-y}{7-3}=\dfrac{-16}{4}=-4\)
=> x= -4.7= -28; y= -4.3= -12
d) \(\dfrac{x}{y}=\dfrac{17}{13}=\dfrac{x}{17}=\dfrac{y}{13}\)
Áp dụng tích chất dãy tỉ số bằng nhau:
\(\dfrac{x}{17}=\dfrac{y}{13}=\dfrac{x+y}{17+13}=\dfrac{-60}{30}=-2\)
=> x= -2.17= -34; y= -2.13= -26
e) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)
=>x= 9= \(3^2\)= 3.4= 12; y= 16= \(4^2\)= 4.4= 16
Bài 2:
2x=3y=\(\dfrac{x}{3}=\dfrac{y}{2}\); 5y=7z=\(\dfrac{y}{7}=\dfrac{z}{5}\)
-> \(\dfrac{x}{3}=\dfrac{y}{2};\dfrac{y}{7}=\dfrac{z}{5}\) = \(\dfrac{x}{21}=\dfrac{y}{14};\dfrac{y}{14}=\dfrac{z}{10}\)=> \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\) = \(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)
Áp dụng tích chất dãy tỉ số bằng nhau:
\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)=\(\dfrac{3x-7y+5z}{63-98+50}\)=\(\dfrac{30}{15}=2\)
=> x= 2.21= 42
=> y= 2.14= 28
=> z= 2.10= 20
\(2^4.5-\left[31-9^2\right]=16.5-\left(31-81\right)=80-\left(-50\right)=130\)
\(2^4\).5-[1.31-(13-4)^2]
=16.5-[1.31-81]
=16.5-[31-81]
=16.5-(-50)
=80-(-50)
=130
a) Ta có: \(\widehat{cNb}+\widehat{MNb}=180^{\circ}\) (hai góc kề bù)
\(\Rightarrow\widehat{MNb}=180^{\circ}-\widehat{cNb}=180^{\circ}-55^{\circ}=125^{\circ}\)
b) Ta có: \(\widehat{MNb}=\widehat{aMN}\left(=125^{\circ}\right)\)
Mà hai góc này đều nằm ở vị trí so le trong
Nên \(Ma//Nb\)