Rút gọn biểu thức
H=` (5√3)/(√3-√5-√3)-(5√3)/(√3-√5+√3)`
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2 ( 3 + 5 ) 2 2 + 3 + 5 + 2 ( 3 − 5 ) 2 2 − 3 − 5 2 3 + 5 4 + ( 5 + 1 ) 2 + 3 − 5 4 − ( 5 − 1 ) 2 = 2 3 + 5 5 + 5 + 3 − 5 5 − 5 2 ( 3 + 5 ) ( 5 − 5 ) + ( 3 − 5 ) ( 5 + 5 ) ( 5 + 5 ) ( 5 − 5 ) = 2 15 − 3 5 + 5 5 − 5 + 15 + 3 5 − 5 5 − 5 25 − 5 = 2. 20 20 = 2 V ậ y A = 2
Ta có
H = ( x + 5 ) ( x 2 – 5 x + 25 ) – ( 2 x + 1 ) 3 + 7 ( x – 1 ) 3 – 3 x ( - 11 x + 5 ) = x 3 + 5 3 – ( 8 x 3 + 3 . ( 2 x ) 2 . 1 + 3 . 2 x . 1 2 + 1 ) + 7 ( x 3 – 3 x 2 + 3 x – 1 ) + 33 x 2 – 15 x = x 3 + 125 – 8 x 3 – 12 x 2 – 6 x – 1 + 7 x 3 – 21 x 2 + 21 x – 7 + 33 x 2 – 15 x = ( x 3 – 8 x 3 + 7 x 3 ) + ( - 12 x 2 – 21 x 2 + 33 x 2 ) + ( - 6 x + 21 x – 15 x ) + 125 – 1 – 7
= 117
Vậy giá trị của M là một số lẻ
Đáp án cần chọn là: A
\(a,\sqrt{75}+2\sqrt{3}-2\sqrt{7}\\ =\sqrt{25\cdot3}+2\sqrt{3}-2\sqrt{7}\\ =5\sqrt{3}+2\sqrt{3}-2\sqrt{7}\\ =7\sqrt{3}-2\sqrt{7}\)
\(b,\sqrt{\left(4-\sqrt{7}\right)^2}-\sqrt{63}\\ =\left|4-\sqrt{7}\right|-\sqrt{9\cdot7}\\ =4-\sqrt{7}-3\sqrt{7}\\ =4-4\sqrt{7}\)
\(c,\dfrac{3}{\sqrt{5}+3}-\dfrac{\sqrt{5}}{\sqrt{5}-3}\\ =\dfrac{3\left(\sqrt{5}-3\right)}{5-3}-\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{5-3}\\ =\dfrac{3\sqrt{5}-9-5-3\sqrt{5}}{2}\\ =\dfrac{-14}{2}\\ =-7\)
Ta có: \(\left(\sqrt{12}-2\sqrt{18}+5\sqrt{3}\right)\cdot\sqrt{3}+5\sqrt{6}\)
\(=\left(2\sqrt{3}-6\sqrt{3}+5\sqrt{3}\right)\cdot\sqrt{3}+5\sqrt{6}\)
\(=3+5\sqrt{6}\)
\(A=\dfrac{\sqrt{6+2\sqrt{5}}}{2-\sqrt{6-2\sqrt{5}}}-\dfrac{\sqrt{6-2\sqrt{5}}}{2+\sqrt{6+2\sqrt{5}}}\)
\(=\dfrac{\sqrt{5}+1}{2-\sqrt{5}+1}-\dfrac{\sqrt{5}-1}{3+\sqrt{5}}\)
\(=\dfrac{\left(3+\sqrt{5}\right)\left(\sqrt{5}+1\right)-\left(\sqrt{5}-1\right)\left(3-\sqrt{5}\right)}{4}\)
\(=\dfrac{3\sqrt{5}+3+5+\sqrt{5}-3\sqrt{5}+5+3-\sqrt{5}}{4}\)
\(=4\)
a)
\(2\sqrt{5}\)+ I1-\(\sqrt{5}\)I
\(2\sqrt{5}\)+1-\(\sqrt{5}\)
1+\(\sqrt{5}\)
b: \(=\dfrac{\sqrt{3}-1+\sqrt{3}+1-4\sqrt{3}}{2}=-\sqrt{3}\)
\(2\sqrt{27}-\sqrt{\dfrac{16}{3}}-\sqrt{48}-\sqrt{8\dfrac{1}{3}}\)
\(=6\sqrt{3}-4\sqrt{\dfrac{1}{3}}-4\sqrt{3}-5\sqrt{\dfrac{1}{3}}\)
\(=2\sqrt{3}-9\sqrt{\dfrac{1}{3}}\)
\(=2\sqrt{3}-3\sqrt{9\cdot\dfrac{1}{3}}\)
\(=2\sqrt{3}-3\sqrt{3}\)
\(=-\sqrt{3}\)
________________________
\(\left(\sqrt{125}-\sqrt{12}-2\sqrt{5}\right)\left(3\sqrt{5}-\sqrt{3}+\sqrt{27}\right)\)
\(=\left(5\sqrt{5}-2\sqrt{3}-2\sqrt{5}\right)\left(3\sqrt{5}-\sqrt{3}+3\sqrt{3}\right)\)
\(=\left(3\sqrt{5}-2\sqrt{3}\right)\left(3\sqrt{5}+2\sqrt{3}\right)\)
\(=\left(3\sqrt{5}\right)^2-\left(2\sqrt{3}\right)^2\)
\(=15-12\)
\(=3\)