\(\dfrac{x-3}{x+2}>hoặc=0\)
tìm x bt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thấy : \(\sqrt{x}\ge0\)
\(\Rightarrow P=\dfrac{\sqrt{x}+2}{2\sqrt{x}+1}>0\)
\(\Rightarrow\left|P\right|=P\)
Ta có : \(\left|P\right|=P\ge P\)
=> P = P .
Vậy \(\forall x>0\) TMYC đè bài
Sửa đề: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\cdot\dfrac{x-4}{4-\sqrt{x}}\)
a: \(P=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{x-4}\cdot\dfrac{x-4}{4-\sqrt{x}}=\dfrac{2x}{4-\sqrt{x}}\)
b: Để P>3 thì P-3>0
\(\Leftrightarrow-\dfrac{2x}{\sqrt{x}-4}-3>0\)
\(\Leftrightarrow\dfrac{-2x-3\sqrt{x}+12}{\sqrt{x}-4}>0\)
\(\Leftrightarrow\dfrac{5\sqrt{x}-12}{\sqrt{x}-4}< 0\)
=>12/5<căn x<4
=>144/25<x<16
\(x+\dfrac{1}{x}=3\Leftrightarrow\left(x+\dfrac{1}{x}\right)^3=27\\ \Leftrightarrow x^3+\left(\dfrac{1}{x}\right)^3+3x\cdot\dfrac{1}{x}\left(x+\dfrac{1}{x}\right)=27\\ \Leftrightarrow x^3+\dfrac{1}{x^3}+3\cdot3=27\\ \Leftrightarrow x^3+\dfrac{1}{x^3}=18\)
mk giải 1 bài lm mẩu nha .
+) ta có : \(A=x-12\sqrt{x}\Leftrightarrow x-12\sqrt{x}-A=0\)
vì phương trình này luôn có nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow6^2+A\ge0\Leftrightarrow A\ge-36\)
vậy giá trị nhỏ nhất của \(A\) là \(-36\) dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{-b'}{a}=\dfrac{6}{1}=6\Leftrightarrow x=36\)
mấy câu còn lại bn chuyển quế đưa về phương trình bật 2 theo \(x\) rồi giải như trên là đc :
lộn ! là phương trình bật 2 đối với ẩn là \(\sqrt{x}\) nha :
DƯƠNG PHAN KHÁNH DƯƠNG
\(\left(\dfrac{3}{2}x-1\right)\left(x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{2}x-1=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-4\end{matrix}\right.\)
\(a,\) ta có :
\(\Leftrightarrow\left\{{}\begin{matrix}A=\sqrt{3}+\sqrt{2^2.3}-\sqrt{3^2.3}-\sqrt{6^2}\\A=\sqrt{3}+2\sqrt{3}-3\sqrt{3}-6\\A=\sqrt{3}.\left(1+2-3\right)-6\\A=-6\end{matrix}\right.\)
\(\Rightarrow A=-6\) . vậy \(A=9\sqrt{5}\)
__________________________________________________________
\(b,\) với \(x>0\) và \(x\ne1\) . ta có :
\(B=\dfrac{2}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}+\dfrac{3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\left(\sqrt{x}-1\right)+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\sqrt{x}+1+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow\) \(B=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{4}{\sqrt{x}}\)
vậy với \(x>0\) \(;\) \(x\ne1\) thì \(B=\dfrac{4}{\sqrt{x}}\)
để \(B=2\) thì \(\dfrac{4}{\sqrt{x}}=2\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
vậy để \(B=2\) thì \(x=4\)
\(P=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)^2}\)
\(P=-\dfrac{1}{3}\)
\(\Rightarrow\left(\sqrt{x}+3\right)^2=3\sqrt{x}+3\)
\(\Leftrightarrow x-\sqrt{x}+6=0\)
\(\Leftrightarrow\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow x=9\left(Vì\sqrt{x}+2>0\right)\)
\(P=-\left(\dfrac{3\sqrt{x}+3}{\left(\sqrt{x}+3\right)^2}\right)=-\left(\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)^2}\right)< -3< -1\)
ĐKXĐ: x<>-2
\(\dfrac{x-3}{x+2}>=0\)
TH1: \(\left\{{}\begin{matrix}x-3>=0\\x+2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=3\\x>-2\end{matrix}\right.\)
=>x>=3
TH2: \(\left\{{}\begin{matrix}x-3< =0\\x+2< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =3\\x< -2\end{matrix}\right.\)
=>x<-2