K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2024

Tam giác ABC vuông tại A ta có:

\(tanB=\dfrac{AC}{AB}=>\dfrac{5}{12}=\dfrac{AC}{6}=>AC=\dfrac{5\cdot6}{12}=\dfrac{5}{2}\left(cm\right)\)

Áp dụng định lý Py-ta-go cho tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\\ =>BC=\sqrt{AB^2+AC^2}\\ =>BC=\sqrt{6^2+\left(\dfrac{5}{2}\right)^2}=\dfrac{13}{2}\left(cm\right)\)

1 tháng 7 2024

Để giải bài toán, ta cần sử dụng một số công thức và định lý trong hình học, đặc biệt là định lý Pythagore và định nghĩa của các hàm số lượng giác.

Cho tam giác ABC vuông tại A, với AB = 6 cm và tanα = 5/12. Góc B = α.

a) Tính độ dài cạnh AC

Vì tam giác vuông tại A, góc α là góc B, ta có:

tan⁡(α)=đoˆˊi diệnkeˆˋ\tan(\alpha) = \frac{\text{đối diện}}{\text{kề}}tan(α)=keˆˋđoˆˊi diện

Trong tam giác ABC vuông tại A:

tan⁡(α)=BCAC\tan(\alpha) = \frac{BC}{AC}tan(α)=ACBC

Theo đề bài, tan⁡(α)=512\tan(\alpha) = \frac{5}{12}tan(α)=125.

Do đó, ta có:

BCAC=512\frac{BC}{AC} = \frac{5}{12}ACBC=125

Từ đó suy ra:

BC=512ACBC = \frac{5}{12} ACBC=125AC

b) Tính độ dài cạnh BC

Ta sử dụng định lý Pythagore cho tam giác ABC vuông tại A:

BC2=AB2+AC2BC^2 = AB^2 + AC^2BC2=AB2+AC2

Đầu tiên, ta cần tính AC.

Biết rằng tan⁡(α)=512\tan(\alpha) = \frac{5}{12}tan(α)=125, do đó ta có:

sin⁡(α)=BCBC2+AC2\sin(\alpha) = \frac{BC}{BC^2 + AC^2}sin(α)=BC2+AC2BC sin⁡(α)=BCBC2+AC2\sin(\alpha) = \frac{BC}{BC^2 + AC^2}sin(α)=BC2+AC2BC

Vì tan(α) = 5/12 nên ta đặt BC = 5k và AC = 12k. Vì thế:

BC=5kBC = 5kBC=5k

AC=12kAC = 12kAC=12k

Sử dụng định lý Pythagore:

BC2=AB2+AC2BC^2 = AB^2 + AC^2BC2=AB2+AC2

(5k)2=AB2+(12k)2(5k)^2 = AB^2 + (12k)^2(5k)2=AB2+(12k)2

25k2=62+144k225k^2 = 6^2 + 144k^225k2=62+144k2

25k2=36+144k225k^2 = 36 + 144k^225k2=36+144k2

Từ đó, ta có:

AC=12k5AC = \frac{12k}{5}AC=512k

AC2=AB2+BC2AC^2 = AB^2 + BC^2AC2=AB2+BC2

(12k)2=62+(5k)2(12k)^2 = 6^2 + (5k)^2(12k)2=62+(5k)2

144k2=36+25k2144k^2 = 36 + 25k^2144k2=36+25k2

144k2−25k2=36144k^2 - 25k^2 = 36144k225k2=36

119k2=36119k^2 = 36119k2=36

k2=36119k^2 = \frac{36}{119}k2=11936

k=36119k = \sqrt{\frac{36}{119}}k=11936

k=6119k = \frac{6}{\sqrt{119}}k=1196

BC=5k=5×6119=30119BC = 5k = 5 \times \frac{6}{\sqrt{119}} = \frac{30}{\sqrt{119}}BC=5k=5×1196=11930

AC=12k=12×6119=72119AC = 12k = 12 \times \frac{6}{\sqrt{119}} = \frac{72}{\sqrt{119}}AC=12k=12×1196=11972

Chúng ta có thể tính toán lại bằng cách:

Suy ra: BC=512ACBC = \frac{5}{12} ACBC=125AC AC=12×65=14.4AC = \frac{12 \times 6}{5} = 14.4AC=512×6=14.4 BC=5×1.2=6BC = 5 \times 1.2 = 6BC=5×1.2=6

Suy ra:...

23 tháng 1 2021

Gọi mỗi góccòn lại trên giấy ô vuông là K; M; N

 Xét Tg AMB vuông tại M ta có:

AB^2 = AM^2 + MB^2 (định lí Pi-ta-go)

Thay số: AB^2 = 22 + 12 = 5

=> AB = căn 5

Xét Tg ANC vuông tại N ta có:

AC^2 = AN^2 + NC^2 (định lí Pi-ta-go )

 AC^2= 32 + 42 = 25

=> AC = 5

Xét Tg BKC vuông tại K ta có:

BC^2= BK^2+ KC^2(định lí Pi-ta-go )

BC^2 = 32 + 52 = 34

=>BC= căn 34

 

20 tháng 12 2022

Diện tích tam giác:
\(15,6\times12,7:2=99,06\left(cm^2\right)\)

20 tháng 12 2022

diện tích hình tam giác abc là

15.6×12.7:2=99.06(cm2)

20 tháng 12 2022

15.6×12.7:2=99.06(cm2)

1 tháng 1 2018

A B C 16,6 CM 12,7CM

diện tích tam giác ABC là

\(\left(12,7\times15,6\right)\div2=99,06\left(cm^2\right)\)

đáp số : \(99,06cm^2\)

2 tháng 1 2019

Diện tích hình tam giác vuông abc là :

15.6 x 12.7 : 2 = 99.06 ( cm2 ) 

Đáp số : 99.08 cm2

18 tháng 1 2017

chịu. bài đố đó ko hiểu cho lắm

9 tháng 10 2017

ko có hình ak bạn

Giải chi tiếtBài 2: Tam giác ABC có AB = 25, AC = 26, đường cao AH = 24. Tính BC.Bài 3: Độ dài các cạnh góc vuông của một tam giác vuông tỉ lệ với 8 và 15, cạnh huyền dài 51cm. Tính độ dài hai cạnh góc vuông.Bài 4: Cho tam giác ABC vuông tại A, đường cao AH, trên đó lấy điểm D. Trên tia đối của tia HA lấy một điểm E sao cho HE = AD. Đường thẳng vuông góc với AH tại D cắt AC tại F. Chứng minh rằng...
Đọc tiếp

Giải chi tiết

Bài 2: Tam giác ABC có AB = 25, AC = 26, đường cao AH = 24. Tính BC.

Bài 3: Độ dài các cạnh góc vuông của một tam giác vuông tỉ lệ với 8 và 15, cạnh huyền dài 51cm. Tính độ dài hai cạnh góc vuông.

Bài 4: Cho tam giác ABC vuông tại A, đường cao AH, trên đó lấy điểm D. Trên tia đối của tia HA lấy một điểm E sao cho HE = AD. Đường thẳng vuông góc với AH tại D cắt AC tại F. Chứng minh rằng EB ^ EF.

Bài 5: Cho tam giác ABC có độ dài các cạnh bằng 3cm,4cm,5cm.Chứng minh rằng tam giác ABC vuông.

Bài 6: Cho tam giác ABC có độ dài các cạnh bằng 6cm,8cm,10cm.Chứng minh rằng tam giác ABC vuông.

Bài 7:Độ dài các cạnh góc vuông của một tam giác vuông tỉ lệ với 8 và 15, cạnh huyền dài 51cm. Tính độ dài hai cạnh góc vuông.

3

Bài 3: 

Gọi độ dài hai cạnh góc vuông lần lượt là a,b

Theo đề, ta có: a/8=b/15

Đặt a/8=b/15=k

=>a=8k; b=15k

Ta có: \(a^2+b^2=51^2\)

\(\Leftrightarrow289k^2=2601\)

=>k=3

=>a=24; b=45

Bài 6: 

Xét ΔABC có \(10^2=8^2+6^2\)

nên ΔABC vuông tại A

22 tháng 1 2022

Refer:

2, 

Ta có:AH là đường cao ΔABC

⇒AH ⊥ BC tại H

⇒∠AHB=∠AHC=90°

⇒ΔAHB và ΔAHC là Δvuông H

Xét ΔAHB vuông H có:

     AH² + HB²=AB²(Py)

⇔24² + HB²=25²

⇔         HB²=25² - 24²

⇔         HB²=49

⇒         HB=7(đvđd)

Chứng minh tương tự:HC=10(đvđd)

Ta có:BC=BH + CH=7 + 10=17(đvđd)

25 tháng 5 2022

Độ dài cạnh AB so với cạnh BC là: \(\dfrac{3}{4}\)\(\dfrac{4}{5}\) =\(\dfrac{3}{5}\)

Độ dài cạnh AB là: 72:(3+4+5)x3= 18(cm)

Độ dài cạnh AC là: 72:(3+4+5)x4 = 24(cm)

Diện tích tam giác ABC là: 18x24:2 = 216(\(cm^2\))

Đáp số: 216cm2

19 tháng 2 2018

Giải bài 61 trang 133 Toán 7 Tập 1 | Giải bài tập Toán 7

Áp dụng định lí Pi-ta-go trong ΔAMB vuông tại M ta có:

AB2 = AM2 + MB2 = 22 + 12 = 5

⇒ AB = √5

Áp dụng định lí Pi-ta-go trong ΔANC vuông tại N ta có:

AC2 = AN2 + NC2 = 32 + 42 = 25

⇒ AC = 5

Áp dụng định lí Pi-ta-go trong ΔBKC vuông tại K ta có:

BC2 = BK2 + KC2 = 32 + 52 = 34

⇒ BC = √34

AH
Akai Haruma
Giáo viên
5 tháng 2 2024

Lời giải:

Coi độ dài cạnh AB là 3 phần thì độ dài cạnh AC là 4 phần, độ dài cạnh BC là 5 phần.

Tổng số phần bằng nhau: $3+4+5=12$ (phần)

Độ dài cạnh AB: $144:12\times 3=36$ (cm)

Độ dài cạnh AC: $144:12\times 4=48$ (cm)

Diện tích tam giác $ABC$: $36\times 48:2=864$ (cm2)