Tìm n:
(4n - 2)4 -16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4n-16 chia hết n-2
=>4(n-2)-8 chia hết n-2
Vi 4(n-2) chia hết n-2 nên 8 chia het n-2
=>n-2 thuộc U(8)={-1;1;-2;2;-4;4;-8;8}
=>n thuộc {1;3;0;4;-2;6;-6;10}
a) \(3^5=x\Rightarrow x=243\)
b) \(x^4=16\Rightarrow x^4=2^4\Rightarrow x=2\)
c) \(4^n=64\Rightarrow4^n=4^3\Rightarrow n=3\)
\(5^4=n\Rightarrow n=625\)
\(n^3=125\Rightarrow n^3=5^3\Rightarrow n=5\)
\(11^n=1313\Rightarrow11^n=11.121\Rightarrow11^{n-1}=121\Rightarrow11^{n-1}=11^2\Rightarrow n-1=11\Rightarrow n=12\)
1)
a)
Để tìm x trong phương trình 3^5 = x, ta thực hiện phép tính 3^5 = 3 * 3 * 3 * 3 * 3 = 243. Vậy x = 243.
b)
Để tìm x trong phương trình x^4 = 16, ta thực hiện phép tính căn bậc 4 của cả hai vế phương trình: √(x^4) = √16. Khi đó, ta được x = ±2.
c)
Để tìm n trong phương trình 4^n = 64, ta thực hiện phép tính logarit cơ số 4 của cả hai vế phương trình: log4(4^n) = log4(64). Khi đó, ta được n = 3.
2) a)
Để tìm n trong phương trình 5^4 = N, ta thực hiện phép tính 5^4 = 5 * 5 * 5 * 5 = 625. Vậy N = 625.
b)
Để tìm n trong phương trình n^3 = 125, ta thực hiện phép tính căn bậc 3 của cả hai vế phương trình: ∛(n^3) = ∛125. Khi đó, ta được n = 5.
c)
Để tìm n trong phương trình 11^n = 1331, ta thực hiện phép tính logarit cơ số 11 của cả hai vế phương trình: log11(11^n) = log11(1331). Khi đó, ta được n = 3.
Tìm n để thoả mãn điều gì thế em???