K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\) 

AD chung

Do đó: ΔABD=ΔAED

=>DB=DE

=>D nằm trên đường trung trực của BE(1)

Ta có: AB=AE
=>A nằm trên đường trung trực của BE(2)

Từ (1),(2) suy ra AD là đường trung trực của BE

=>AD\(\perp\)BE

Bài 2: 

Xét ΔADO vuông tại D và ΔAEO vuông tại E có

AO chung

\(\widehat{DAO}=\widehat{EAO}\)

Do đó: ΔADO=ΔAEO

Suy ra: OD=OE

Bài 3: 

Xét ΔABE và ΔACD có 

AB=AC
\(\widehat{A}\) chung

AE=AD
Do đó: ΔABE=ΔACD

Suy ra: BE=CD

24 tháng 9 2016

ta có AE=AB nên tam giác ABE cân ở A

mà AD là phân giác cuả góc BAE 

suy ra AD là đương phân giác của tam giác ABE

do đó AD đồng thời là đường trung trực của BE

vậy ADvuoong góc với BE

31 tháng 8 2021

Gọi giao điểm của AD và BE là O.

Xét tam giác AEO và tam giác ABO,có:

             AE=AB  (gt)

       Góc EAO=Góc BAO (gt)

        AO là cạnh chung

=> Tam giác AEO=Tam giác ABO (c.g.c)

    =>Góc AOE= Góc ABO (2 góc tương ứng)

Ta có:  Góc AOE + Góc AOB=180o  (2 góc bù nhau)

       Mà Góc AOE=Góc AOB  (cmt)

           => Góc AOE = 90o

    => AD⊥BE tại O

Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

Suy ra: DB=DE

Ta có: AB=AE

nên A nằm trên đường trung trực của BE(1)

Ta có: DB=DE

nên D nằm trên đường trung trực của BE(2)

Từ (1) và (2) suy AD là đường trung trực của BE

hay AD\(\perp\)BE

31 tháng 8 2021

Ta có:

AB = AE

=> Tam giác ABE cân tại A

Gọi I là giao điểm AD và BE

Xét tam giác ABI và tam giác AEI

AB = AE

Góc BAI = góc EAI

AD: cạnh chung

=> Tam giác ABI = tam giác AEI (c-g-c)

=> Góc AIB = góc AIE (góc tương ứng)

Mà góc AIB + góc AIE = 180 (kề bù)

=> AIB = AIE = 90

=> AD vuông góc với BE