K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
1 tháng 7 2024

\(A=\dfrac{6n-1}{2n+3}=\dfrac{3\left(2n+3\right)-10}{2n+3}\\ =3-\dfrac{10}{2n+3}\)

Để A nguyên thì: \(\dfrac{10}{2n+3}\) nguyên

\(\Rightarrow10⋮\left(2n+3\right)\)

\(\Rightarrow2n+3\inƯ\left(10\right)=\left\{1;-1;2;-2;5;-5;10;-10\right\}\\ \Rightarrow2n\in\left\{-2;-4;-1;-5;2;-8;7;-13\right\}\\ \Rightarrow n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};1;-4;\dfrac{7}{2};-\dfrac{13}{2}\right\}\)

 

\(A=\dfrac{6n+3-2}{2n+1}=3-\dfrac{2}{2n+1}\)

Để A max thì 2/2n+1 min

mà n nguyên

nên 2n+1=-1

=>2n=-2

=>n=-1

3 tháng 12 2021

\(a,A=\dfrac{-3\left(2n-3\right)-8}{2n-3}=-3-\dfrac{8}{2n-3}\in Z\\ \Leftrightarrow2n-3\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\\ \Leftrightarrow n\in\left\{1;2\right\}\left(n\in Z\right)\)

\(b,\dfrac{ab}{a+2b}=\dfrac{3}{2}\Leftrightarrow\dfrac{a+2b}{ab}=\dfrac{2}{3}\Leftrightarrow\dfrac{1}{b}+\dfrac{2}{a}=\dfrac{2}{3}\\ \dfrac{bc}{b+2c}=\dfrac{4}{3}\Leftrightarrow\dfrac{b+2c}{bc}=\dfrac{3}{4}\Leftrightarrow\dfrac{1}{c}+\dfrac{2}{b}=\dfrac{3}{4}\\ \dfrac{ca}{c+2a}=3\Leftrightarrow\dfrac{c+2a}{ca}=\dfrac{1}{3}\Leftrightarrow\dfrac{1}{a}+\dfrac{2}{c}=\dfrac{1}{3}\)

Cộng vế theo vế \(\Leftrightarrow\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}=\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{1}{3}=\dfrac{7}{4}\)

\(\Leftrightarrow3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{7}{4}\\ \Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{7}{12}\\ \Leftrightarrow\dfrac{ab+bc+ca}{abc}=\dfrac{7}{12}\\ \Leftrightarrow T=\dfrac{12}{7}\)

AH
Akai Haruma
Giáo viên
7 tháng 10 2023

Lời giải:

$A=\frac{6n-2}{2n+1}=\frac{3(2n+1)-5}{2n+1}=3-\frac{5}{2n+1}$ 

Để $A$ nguyên thì $\frac{5}{2n+1}$ nguyên.

Với $n$ là stn thì điều này xảy ra khi $5\vdots 2n+1$
$\Rightarrow 2n+1\in\left\{1; 5\right\}$ (do $2n+1>0$ với mọi $n$ tự nhiên)

$\Rightarrow n\in\left\{0; 2\right\}$ (tm)

12 tháng 2 2018

6n + 3 \(⋮\)2n + 5

=> 6n + 15 - 12 \(⋮\)2n + 5

=> 3 . ( 2n + 5 ) - 12 \(⋮\)2n + 5 mà 3 . ( 2n + 5 ) \(⋮\)2n + 5 => 12 chia hết cho 2n + 5

=> 2n + 5 thuộc Ư ( 12 ) = { - 12 ; - 6 ; - 4 ; - 3 ; - 2 ; - 1 ; 1 ; 2 ; 3 ; 4 ; 6 ; 12 }

Còn lại bạn tự làm nha

12 tháng 2 2018

\(3-2n⋮n-1\)

\(\Rightarrow4-1-2n⋮n-1\)

\(\Rightarrow4-2n-1⋮n-1\)

\(\Rightarrow4⋮n-1\)

\(\Rightarrow n-1\inƯ\left(4\right)\)

\(Ư\left(4\right)=\left\{-1;1;2;-2;4;-4\right\}\)

Ta có bảng sau :

n - 1- 11- 22- 4

4

n02- 1 3- 3

5

Vậy .......

14 tháng 8 2021

Để B đạt GTLN thì \(\dfrac{8}{2n-1}\)đạt GTLN

⇒2n-1 là số nguyên dương nhỏ nhất

⇒2n-1=1

⇒2n=2

⇒n=1

8 tháng 8 2023

a, Ta có : \(\text{n + 5 = (n - 1)+6}\)

Vì \(\text{(n-1) ⋮ n-1}\)

Nên để \(\text{n+5 ⋮ n-1}\) `n-1`

Thì \(\text{6 ⋮ n-1}\) 

\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)

\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)

\(\text{________________________________________________________}\)

b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)

Vì \(\text{2(n+2) ⋮ n+2}\)

Nên để \(\text{2n-4 ⋮ n+2}\)

Thì \(\text{8 ⋮ n+2}\)

\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)

\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )

\(\text{_________________________________________________________________ }\)

c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)

Vì \(\text{3(2n+1) ⋮ 2n+1}\)

Nên để\(\text{ 6n+4 ⋮ 2n+1}\)

Thì \(\text{1 ⋮ 2n+1}\)

\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)

\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)

\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )

\(\text{_______________________________________}\)

Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)

Vì \(\text{-2(n+1) ⋮ n+1}\)

Nên để \(\text{3-2n ⋮ n+1}\)

Thì\(\text{ 5 ⋮ n + 1}\)

\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )

 

16 tháng 4 2016

Tìm số nguyên tố P để 2p + P2 là số nguyên tố

GIÚP MÌNH VỚI!!!

27 tháng 8 2023

A = \(\dfrac{3n+1}{2n+3}\) (n \(\ne\) - \(\dfrac{3}{2}\))

\(\in\) Z ⇔ 3n + 1 ⋮ 2n + 3

             6n + 2 ⋮ 2n + 3

         6n + 9 - 7 ⋮ 2n + 3

    3.(2n + 3) - 7 ⋮ 2n + 3

                      7 ⋮ 2n + 3 ⇒ 2n + 3 \(\in\) Ư(7) = { -7; -1; 1; 7}

Lập bảng ta có: 

2n+3 -7 -1 1 7
n -5 -2 -1 2

Vậy các số nguyên n thỏa mãn đề bài là:

\(\in\) { -5; -2; -1; 2}

            

27 tháng 8 2023

\(A=\dfrac{3n+1}{2n+3}\inℤ\) \(\left(n\ne-\dfrac{3}{2}\right)\)

\(\Rightarrow3n+1⋮2n+3\)

\(\Rightarrow2\left(3n+1\right)-3\left(2n+3\right)⋮2n+3\)

\(\Rightarrow6n+2-6n-9⋮2n+3\)

\(\Rightarrow-7⋮2n+3\)

\(\Rightarrow2n+3\in\left\{-1;1;-7;7\right\}\)

\(\Rightarrow n\in\left\{-2;-1;-5;2\right\}\)