K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2017

ai giúp mình nhanh ik mình dag cần gấp

Ai nhanh mik nha

20 tháng 9 2017

200 

nhé

15 tháng 10 2017

Đơn giản mà.

Đặt biểu thức trên là A

+ Nếu n chẵn (mà 20182017 là số chẵn)  => n + 20182017 là số chẵn => A chia hết cho 2

+ Nếu n lẻ (mà 20172018 là số lẻ)  => n + 20172018 là số chẵn => A chia hết cho 2

Vậy với mọi n thuộc N thì A chia hết cho 2

27 tháng 11 2017

Ta có : a không chia hết cho 2 nên a lẻ

Do đó: a^2 _ lẻ

Tương tự:b^2_lẻ

Do đó: a^2+b^2_Chẵn  (vì lẻ +lẻ = chẵn)

Nên   : a^2+b^2__Chẵn

15 tháng 10 2017

Đặt biểu thức là A

+, Nếu n chẵn (mà 20182017 là số chẵn) => n + 20182017 là số chẵn => A chia hết cho 2

+, Nếu n lẻ 

(mà 2018 là số lẻ) => n + 2017 là số chẵn => A chia hết cho 2

Với mọi n thuộc N thì A chia hết cho 2

15 tháng 10 2017

đợi mk xíu

17 tháng 8 2018

th1 n là số lẻ

nếu n là số lẻ thì (n+2017) là số chẵn nên (n+2017).(n+2018)là 1 số chẵn 

th2 n là số chẵn ư

nếu n là số chẵn thì n+2018 là số chẵn nên (n+2017).(n+2018) la2 1 số chẵn

KICK CHO MK NHÉ LẦN SAU MK SẼ GIÚP BẠN

27 tháng 12 2017

A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+..........+\frac{2018}{2017^2+2017}\)

>\(\frac{2018}{2017^2+2017}+\frac{2018}{2017^2+2017}+........+\frac{2018}{2017^2+2017}\)

\(=\frac{2018}{2017^2+2017}.2017=\frac{2018.2017}{2017\left(2017+1\right)}=1\)                                  (1)

Lại có:A<\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+1}+.........+\frac{2018}{2017^2+1}\)

\(=\frac{2018}{2017^2+1}.2017=\frac{2018.2017}{2017^2+1}=\frac{2017.\left(2017+1\right)}{2017^2+1}\)

\(=\frac{2017^2+2017}{2017^2+1}=\frac{2017^2+1+2016}{2017^2+1}=1+\frac{2016}{2017^2+1}< 2\)                 (2)

Từ (1) và (2) suy ra:1 < A < 2

Vậy A không phải là số nguyên

18 tháng 6 2018

vui nhi

22 tháng 5 2020

Câu b đề sai nha, bây giờ đặt \(a=\sqrt{2017},b=\sqrt{2018}\)

Ta có \(\frac{a^2}{b}+\frac{b^2}{a}< a+b\Leftrightarrow ab\left(\frac{a^2}{b}+\frac{b^2}{a}\right)< ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3< ab\left(a+b\right)\)(1)

Mà \(ab\left(a+b\right)\le\left(a^2-ab+b^2\right)\left(a+b\right)=a^3+b^3\)(2)

Từ (1), (2) => Sai

22 tháng 5 2020

a) Ta có:

\(\frac{1}{\left(k+1\right)\sqrt{k}}=\frac{k+1-k}{\left(k+1\right)\sqrt{k}}=\frac{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(k+1\right)\sqrt{k}}\)\(< \frac{2\sqrt{k+1}\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(k+1\right)\sqrt{k}}=\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{\sqrt{k+1}\sqrt{k}}=\frac{2}{\sqrt{k}}-\frac{2}{\sqrt{k+1}}\)

Cho k=1,2,....,n rồi cộng từng vế ta có:

\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+....+\frac{1}{\left(n+1\right)\sqrt{n}}< \left(\frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}\right)+\left(\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}\right)\)\(+\left(\frac{2}{\sqrt{3}}-\frac{2}{\sqrt{4}}\right)+....+\left(\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n-1}}< 2\)

27 tháng 8 2017

Với n là số lẻ thì n + 20172018 là số chẵn

Suy ra .............

Với n là số chẵn thì n + 20182017 là số chẵn 

Suy ra ............

Vậy ..............

27 tháng 8 2017

tớ chẳng hiểu gì

Vì n+2017;n+2018 là hai số nguyên liên tiếp

nên \(\left(n+2017\right)\left(n+2018\right)⋮2\)