Chứng tỏ với mọi n thuộc N ta có :
( n + 2017^2018 ) . ( n + 2018^2017 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đơn giản mà.
Đặt biểu thức trên là A
+ Nếu n chẵn (mà 20182017 là số chẵn) => n + 20182017 là số chẵn => A chia hết cho 2
+ Nếu n lẻ (mà 20172018 là số lẻ) => n + 20172018 là số chẵn => A chia hết cho 2
Vậy với mọi n thuộc N thì A chia hết cho 2
Ta có : a không chia hết cho 2 nên a lẻ
Do đó: a^2 _ lẻ
Tương tự:b^2_lẻ
Do đó: a^2+b^2_Chẵn (vì lẻ +lẻ = chẵn)
Nên : a^2+b^2__Chẵn
Đặt biểu thức là A
+, Nếu n chẵn (mà 20182017 là số chẵn) => n + 20182017 là số chẵn => A chia hết cho 2
+, Nếu n lẻ
(mà 2018 là số lẻ) => n + 2017 là số chẵn => A chia hết cho 2
Với mọi n thuộc N thì A chia hết cho 2
th1 n là số lẻ
nếu n là số lẻ thì (n+2017) là số chẵn nên (n+2017).(n+2018)là 1 số chẵn
th2 n là số chẵn ư
nếu n là số chẵn thì n+2018 là số chẵn nên (n+2017).(n+2018) la2 1 số chẵn
KICK CHO MK NHÉ LẦN SAU MK SẼ GIÚP BẠN
A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+..........+\frac{2018}{2017^2+2017}\)
>\(\frac{2018}{2017^2+2017}+\frac{2018}{2017^2+2017}+........+\frac{2018}{2017^2+2017}\)
\(=\frac{2018}{2017^2+2017}.2017=\frac{2018.2017}{2017\left(2017+1\right)}=1\) (1)
Lại có:A<\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+1}+.........+\frac{2018}{2017^2+1}\)
\(=\frac{2018}{2017^2+1}.2017=\frac{2018.2017}{2017^2+1}=\frac{2017.\left(2017+1\right)}{2017^2+1}\)
\(=\frac{2017^2+2017}{2017^2+1}=\frac{2017^2+1+2016}{2017^2+1}=1+\frac{2016}{2017^2+1}< 2\) (2)
Từ (1) và (2) suy ra:1 < A < 2
Vậy A không phải là số nguyên
Câu b đề sai nha, bây giờ đặt \(a=\sqrt{2017},b=\sqrt{2018}\)
Ta có \(\frac{a^2}{b}+\frac{b^2}{a}< a+b\Leftrightarrow ab\left(\frac{a^2}{b}+\frac{b^2}{a}\right)< ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3< ab\left(a+b\right)\)(1)
Mà \(ab\left(a+b\right)\le\left(a^2-ab+b^2\right)\left(a+b\right)=a^3+b^3\)(2)
Từ (1), (2) => Sai
a) Ta có:
\(\frac{1}{\left(k+1\right)\sqrt{k}}=\frac{k+1-k}{\left(k+1\right)\sqrt{k}}=\frac{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(k+1\right)\sqrt{k}}\)\(< \frac{2\sqrt{k+1}\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(k+1\right)\sqrt{k}}=\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{\sqrt{k+1}\sqrt{k}}=\frac{2}{\sqrt{k}}-\frac{2}{\sqrt{k+1}}\)
Cho k=1,2,....,n rồi cộng từng vế ta có:
\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+....+\frac{1}{\left(n+1\right)\sqrt{n}}< \left(\frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}\right)+\left(\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}\right)\)\(+\left(\frac{2}{\sqrt{3}}-\frac{2}{\sqrt{4}}\right)+....+\left(\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n-1}}< 2\)
Với n là số lẻ thì n + 20172018 là số chẵn
Suy ra .............
Với n là số chẵn thì n + 20182017 là số chẵn
Suy ra ............
Vậy ..............
Vì n+2017;n+2018 là hai số nguyên liên tiếp
nên \(\left(n+2017\right)\left(n+2018\right)⋮2\)