K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

Dễ dàng thấy được a, b phải cùng tính chẵn lẻ.

Ta đặt \(\hept{\begin{cases}a^5+b=2^x\left(1\right)\\b^5+a=2^y\left(2\right)\end{cases}}\) với \(\hept{\begin{cases}x,y\in N;x,y>0\\x+y=c\end{cases}}\)

Không mất tính tổng quát ta giả sử: \(a\ge b\)

Lấy (1) - (2) ta được

\(a^5+b-b^5-a=2^x-2^y\)

\(\Leftrightarrow\left(a-b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4-1\right)=2^y\left(2^{x-y}-1\right)\)

Ta thấy rằng \(\hept{\begin{cases}a-b:chan\\a^4+a^3b+a^2b^2+ab^3+b^4-1:le\end{cases}}\)

Ta xét 2 TH: 

TH 1: \(a=b\)

\(\Rightarrow a^5+a=2^x\)

Với \(a=1\)\(\Rightarrow x=1\)(nhận) 

Với \(a>1\)

\(\Rightarrow a\left(a^4+1\right)=2^x\) (loại vì \(a,\left(a^4+1\right)\)trong 2 số này sẽ có ít nhất 1 số lẻ)

TH 2: \(a\ne b\)

Ta có: \(\hept{\begin{cases}a-b:chan\\a^4+a^3b+a^2b^2+ab^3+b^4-1:le\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a-b=k.2^y\\a^4+a^3b+a^2b^2+ab^3+b^4-1=\frac{2^{x-y}-1}{k}\end{cases}}\)(với k là số nguyên dương)

Ta có: \(a-b=k.\left(b^5+a\right)>a+b>a-b\)(loại)

Vậy ta có 1 bộ nghiệm duy nhất là: \(\left(a,b,c\right)=\left(1,1,2\right)\)

17 tháng 10 2017

cái đoạn a-b=k(b^5+a) em k hiểu cho lắm ạ,anh giảng lại dc k

NV
8 tháng 1 2022

1. Đề sai, ví dụ (a;b;c)=(1;2;2) hay (1;2;7) gì đó

2. Theo nguyên lý Dirichlet, trong 4 số a;b;c;d luôn có ít nhất 2 số đồng dư khi chia 3. 

Không mất tính tổng quát, giả sử đó là a và b thì \(a-b⋮3\)

Ta có 2 TH sau:

- Trong 4 số có 2 chẵn 2 lẻ, giả sử a, b chẵn và c, d lẻ \(\Rightarrow a-b,c-d\) đều chẵn \(\Rightarrow\left(a-b\right)\left(c-d\right)⋮4\)

\(\Rightarrow\) Tích đã cho chia hết 12

- Trong 4 số có nhiều hơn 3 số cùng tính chẵn lẽ, khi đó cũng luôn có 2 hiệu chẵn (tương tự TH trên) \(\Rightarrowđpcm\)

3. Với \(n=1\) thỏa mãn

Với \(n>1\) ta có \(3^n\equiv\left(5-2\right)^n\equiv\left(-2\right)^n\left(mod5\right)\)

\(\Rightarrow n.2^n+3^n\equiv n.2^n+\left(-2\right)^n\left(mod5\right)\)

Mặt khác \(n.2^n+\left(-2\right)^n=2^n\left(n+\left(-1\right)^n\right)\)

Mà \(2^n⋮̸5\Rightarrow n+\left(-1\right)^n⋮5\)

TH1: \(n=2k\Rightarrow2k+1⋮5\Rightarrow2k+1=5\left(2m+1\right)\Rightarrow k=5m+2\)

\(\Rightarrow n=10m+4\)

TH2: \(n=2k+1\Rightarrow2k+1-1⋮5\Rightarrow2k⋮5\Rightarrow k=5t\Rightarrow n=10t+1\)

Vậy với \(\left[{}\begin{matrix}n=10k+4\\n=10k+1\end{matrix}\right.\) (\(k\in N\)) thì số đã cho chia hết cho 5

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Để \(A = B\)

\(\begin{array}{l} \Leftrightarrow \left\{ {5;x} \right\} = \left\{ {2;5} \right\}\\ \Leftrightarrow x = 2\end{array}\)

Tương tự, ta có:

\(\begin{array}{l}A = C  \\\Leftrightarrow \left\{ {2;y} \right\} = \left\{ {2;5} \right\} \\ \Leftrightarrow y = 5\end{array}\)

Vậy \(x = 2;y = 5\) thì \(A = B = C\).

19 tháng 11 2017

a, 4C = 12|x|+8/4|x|-5 = 3 + 23/|x|-5 <= 3 + 23/0-5 = -8/5

=> C <= -2/5

Dấu "=" xảy ra <=> x=0

Vậy Min ...

b, Để C thuộc N => 3|x|+2 chia hết cho 4|x|-5

=> 4.(3|x|+2) chia hết cho 4|x|-5

<=> 12|x|+8 chia hết cho 4|x|-5

<=> 3.(|x|+5) + 23 chia hết cho 4|x|-5

=> 23 chia hết chi 4|x|-5 [ vì 3.(4|x|-5) chia hết cho 4|x|-5 ]

Đến đó bạn tìm ước của 23 rùi giải

20 tháng 11 2021

\(a,\)\(A=\left\{x\in R|x< 3\right\}\Rightarrow A=\left(\text{ -∞;3}\right)\)

\(B=\left\{-1;0;1;2;3;4;5\right\}\)

\(\Rightarrow A\cap B=\left\{-1;0;1;2\right\}\)

\(b,x=-1\Rightarrow y=1-2\left(-1\right)+m=m+3\) 

\(x=1\Rightarrow y=1-2+m=m-1\)

\(\Rightarrow C=(m-1;m+3]\subset A\)

\(\Rightarrow C\subset A\Leftrightarrow m+3< 3\Leftrightarrow m< 0\)

 

7 tháng 2 2017

a ) Khai triển : \(\left(x+y\right)^5\) theo nhị thức Newton , ta có :

Đặt \(A=\left(x+y\right)^5-x^5-y^5\)

\(=5x^4y+10x^3y^2+10x^2y^3+5xy^4\)

\(=5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right);2x^2y+2xy^2=2xy\left(x+y\right)\)

Do đó : \(A=5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)

b ) Đặt \(B=a^2\left(a-b-c\right)+b^2\left(b-a-c\right)+cc^2\left(c-a-b\right)\)

\(=3abc+a^3+b^3+c^3-a^2b-b^2a-a^2c-b^2c-c^2a-c^2b\)

\(=a^2\left(a-b\right)+b^2\left(b-a\right)+c\left(2ab-a^2-b^2+c\left(c^2-bc-ac+ab\right)\right)\)

\(=\left(a-b\right)\left(a^2-b^2\right)-c\left(a-b\right)^2+c\left(c-a\right)\left(c-b\right)\)

\(=\left(a-b\right)^2\left(a+b+c\right)+c\left(b-c\right)\left(a-c\right)\)

\(A=B-c\left(b-c\right)\left(a-c\right)=\left(a+b\right)^2\left(a+b-c\right)\).

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Lời giải:

Do $ab+bc+ac=5$ nên:

\(a^2+5=a^2+ab+bc+ac=(a+b)(a+c)\)

\(b^2+5=b^2+ab+bc+ac=(b+c)(b+a)\)

\(c^2+5=c^2+ab+bc+ac=(c+a)(c+b)\)

Do đó:

\(A=a\sqrt{\frac{(b+c)(b+a)(c+a)(c+b)}{(a+b)(a+c)}}+b\sqrt{\frac{(a+b)(a+c)(c+a)(c+b)}{(b+c)(b+a)}}+c\sqrt{\frac{(a+b)(a+c)(b+c)(b+a)}{(c+a)(c+b)}}\)

\(=a\sqrt{(b+c)^2}+b\sqrt{(c+a)^2}+c\sqrt{(a+b)^2}=a(b+c)+b(c+a)+c(a+b)\)

\(=2(ab+bc+ac)=2.5=10\)