1 Tính
a, A=2+5+8+...296+299
b, D= 1+6+11+16+...+46+51
2 tìm x
A, (2x-15)^5=(2x-15)^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(2x-1\right)+\frac{3}{15}=\frac{3}{2}\)
\(\Rightarrow2x-1=\frac{3}{2}-\frac{3}{15}=\frac{13}{10}\)
\(\Rightarrow2x=\frac{13}{10}+1=\frac{23}{10}\)
\(\Rightarrow x=\frac{23}{20}\)
b) \(x+\frac{46}{15}=1,5\)
\(\Rightarrow x+\frac{46}{15}=\frac{3}{2}\)
\(\Rightarrow x=\frac{3}{2}-\frac{46}{15}\)
\(\Rightarrow x=\frac{-47}{30}\)
c) \(\left(-2x+1\right)+\frac{3}{15}=\frac{5}{3}\)
\(\Rightarrow-2x+1=\frac{5}{3}-\frac{3}{15}=\frac{22}{15}\)
\(\Rightarrow-2x=\frac{7}{15}\Rightarrow x=\frac{-7}{30}\)
a) \(\Rightarrow72-20x-36x+84=30x-240-6x-84\)
\(\Rightarrow80x=480\Rightarrow x=6\)
b) \(\Rightarrow15x+25-8x+12=5x+6x+36+1\)
\(\Rightarrow4x=0\Rightarrow x=0\)
c) \(\Rightarrow10x-16-12x+15=12x-16+11\)
\(\Rightarrow14x=4\Rightarrow x=\dfrac{2}{7}\)
1:
a: \(\sqrt{36}-\sqrt{100}=6-10=-4\)
b: Để \(\sqrt{\dfrac{2}{2x-1}}\) có nghĩa thì \(\dfrac{2}{2x-1}>=0\)
=>2x-1>0
=>x>1/2
2:
a: \(A=\dfrac{\left(15\sqrt{180}-5\sqrt{200}-3\sqrt{450}\right)}{\sqrt{10}}\)
\(=15\sqrt{\dfrac{180}{10}}-5\sqrt{\dfrac{200}{10}}-3\sqrt{\dfrac{450}{10}}\)
\(=15\sqrt{18}-5\sqrt{20}-3\sqrt{45}\)
\(=45\sqrt{2}-10\sqrt{5}-9\sqrt{5}\)
\(=45\sqrt{2}-19\sqrt{5}\)
b: \(B=\sqrt{32}-\sqrt{50}-16\sqrt{\dfrac{1}{8}}\)
\(=4\sqrt{2}-5\sqrt{2}-\dfrac{16}{\sqrt{8}}\)
\(=-\sqrt{2}-2\sqrt{8}=-\sqrt{2}-4\sqrt{2}=-5\sqrt{2}\)
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
a, \(4\left(18-5x\right)-12\left(3x-7\right)=15\left(2x-16\right)-6\left(x+14\right)\)
\(\Leftrightarrow72-20x-36x+84=30x-240-6x-84\)
\(\Leftrightarrow156-56x=24x-324\)
\(\Leftrightarrow-80x+480=0\Leftrightarrow x=-6\)
b, \(5\left(3x+5\right)-4\left(2x-3\right)=5x+3\left(2x-12\right)+1\)
\(\Leftrightarrow15x+25-8x+12=5x+6x-36+1\)
\(\Leftrightarrow7x+37=11x-35\)
\(\Leftrightarrow-4x+72=0\Leftrightarrow x=18\)
c, \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-2x-1=12x-5\)
\(\Leftrightarrow-14x+4=0\Leftrightarrow x=\frac{2}{7}\)
d, \(5x-3\left\{4x-2\left[4x-3\left(5x-2\right)\right]\right\}=182\)
\(\Leftrightarrow5x-3\left[4x-15x+6\right]=182\)
\(\Leftrightarrow5x-3\left(-11x+6\right)=182\)
\(\Leftrightarrow5x+33x-18-182=0\)
\(\Leftrightarrow38x-200=0\Leftrightarrow x=\frac{100}{19}\)
Tìm x biết:
a,x-5/7=1/9
b,2x/5=6/2x+1
c,11/8+13/6=85/x
d,2x-2/11=1.1/5
e,x/15=3/5+-2/3
f,x/182=-6/14.35/91
a, \(x\) - \(\dfrac{5}{7}\) = \(\dfrac{1}{9}\)
\(x\) = \(\dfrac{1}{9}\) + \(\dfrac{5}{7}\)
\(x\) = \(\dfrac{52}{63}\)
b, \(\dfrac{2x}{5}\) = \(\dfrac{6}{2x+1}\)
2\(x\).(2\(x\) + 1) = 30
4\(x^2\)+ 2\(x\) - 30 = 0
4\(x^2\) + 12\(x\) - 10\(x\) - 30 = 0
(4\(x^2\) + 12\(x\)) - (10\(x\) + 30) =0
4\(x\).(\(x\) + 3) - 10.(\(x\) +3) = 0
2 (\(x\) + 3).(2\(x\) - 5) = 0
\(\left[{}\begin{matrix}x+3=0\\2x-5=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-3\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-3; \(\dfrac{5}{2}\)}
Bạn chỉ gửi 1 bài thôi chứ nhiều quá làm mỏi tay lắm
Làm bài 1 trước
\(4\cdot(-5)^2+2\cdot(-5)-20\)
\(=4\cdot25+2\cdot(-5)-20\)
\(=100+(-10)-20=100-30=70\)
\(35\cdot(14-10)-14\cdot(35-10)\)
\(=35\cdot14-35\cdot10-14\cdot35-14\cdot10\)
\(=35\cdot14-14\cdot35-35\cdot10-14\cdot10\)
\(=35\cdot10-14\cdot10=(35-14)\cdot10=210\)
\(3\cdot(-5)^2+2\cdot(-5)-20\)
Tương tự như ở câu trên
\(34\cdot(15-10)-15\cdot(34-10)\)
Tương tự như câu thứ 2
Câu cuối tự làm
Bài1:
a. Đây là dãy số cách đều 3 đơn vị.
Có số số hạng là: ( 299 - 2) : 3 + 1 = 100 (số hạng)
Tổng của dãy số là : (299+1) x 100 : 2 = 15000
b. Đây là dãy số cách đều 5 đơn vị.
Có số số hạng là : (51 - 1) : 5 +1 = 11 ( Số hạng)
Tổng: ( 51 + 1) x 11 : 2 = 286
Bài 2:
(2x-15)^5 = (2x-15)^3
(2x-15)^2 = 1
(2x-15)^2 = 1^2
=> 2x-15 = 1
2x = 16
x = 8