K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
30 tháng 6 2024

\(P=4x^2+2y^2-4xy-4x-8y+2050\\ =\left(4x^2-4xy+y^2\right)+y^2-4x-8y+2050\\ =\left(2x-y\right)^2-2.\left(2x-y\right).1+1^2+y^2-10y+2049\\ =\left(2x-y-1\right)^2+\left(y^2-10y+25\right)+2024\\ =\left(2x-y-1\right)^2+\left(y-5\right)^2+2024\ge2024\forall x,y\)

Dấu = xảy ra khi: \(\left(2x-y-1\right)^2=\left(y-5\right)^2=0\\ \Leftrightarrow\left(x;y\right)=\left(3;5\right)\)

Vậy min P = 2024 tại (x;y)=(3;5)

12 tháng 12 2017

P=4x2+4xy+y2+x2-4x+4+y2+8y+16+5

=> P=(2x+y)2+ (x-2)2 + (y+4)2 +5

Ta nhận thấy: \(\hept{\begin{cases}\left(2x+y\right)^2\ge0\forall x,y\\\left(x-2\right)^2\ge0\forall x\\\left(y+4\right)^2\ge0\forall y\end{cases}}\)

=> P=(2x+y)2+ (x-2)2 + (y+4)2 +5 \(\ge\)5  Với mọi x, y

=> GTNN của P là Pmin = 5

Đạt được khi: 

\(\hept{\begin{cases}\left(2x+y\right)^2=0\\\left(x-2\right)^2=0\\\left(y+4\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}2x+y=0\\x-2=0\\y+4=0\end{cases}}\) <=> \(\hept{\begin{cases}x=2&y=-4&\end{cases}}\)

24 tháng 8 2020

Bài làm:

Ta có: \(4x^2+2y^2+4xy-4x-8y+15\)

\(=\left(4x^2+4xy+y^2\right)-2\left(2x+y\right)+1+y^2-6y+9+5\)

\(=\left(2x+y\right)^2-2\left(2x+y\right)+1+\left(y-3\right)^2+5\)

\(=\left(2x+y-1\right)^2+\left(y-3\right)^2+5\ge5\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(2x+y-1\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=3\end{cases}}\)

Vậy \(Min=5\Leftrightarrow\hept{\begin{cases}x=-1\\y=3\end{cases}}\)

24 tháng 8 2020

4x2 + 2y2 + 4xy - 4x - 8y + 15

= [ ( 4x2 + 4xy + y2 ) - 2( 2x + y ) + 1 ] + ( y2 - 6y + 9 ) + 5 

= ( 2x + y - 1 )2 + ( y - 3 )2 + 5

\(\hept{\begin{cases}\left(2x+y-1\right)^2\ge0\forall x,y\\\left(y-3\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(2x+y-1\right)^2+\left(y-3\right)^2+5\ge5\forall x,y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x+y-1=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=3\end{cases}}\)

Vậy GTNN của biểu thức = 5 <=> x = -1 ; y = 3

11 tháng 5 2019

a) \(A=x^2+2y^2+2xy+4x+6y+19\)

\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)

\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)

\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)

b)Đề có gì đó sai sai...

c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!

12 tháng 5 2019

b) \(P=2x^2+y^2+2xy-2y-4\)

\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)

\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)

\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)

Có \(2P\ge-12\Leftrightarrow P\ge-6\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

14 tháng 6 2018

Đặt \(A=-2x^2-y^2-2xy+4x+2y+2\)

\(-A=2x^2+y^2+2xy-3x-2y-2\)

\(-A=\left(x^2+2xy+y^2\right)+x^2-4x-2y-2\)

\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)-4\)

\(-A=\left(x+y-1\right)^2+\left(x-1\right)^2-4\)

Mà  \(\left(x+y-1\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge-4\)

\(\Leftrightarrow A\le4\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)

Vậy  \(A_{Max}=4\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)

14 tháng 6 2018

Đặt  \(B=x^2-4xy+5y^2+10x-22y+27\)

\(B=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+27\)

\(B=\left[\left(x-2y\right)^2+2\left(x-2y\right)\times5+25\right]+\)\(\left(y^2-2y+1\right)+1\)

\(B=\left(x-2y+5\right)^2+\left(y-1\right)^2+1\)

Mà  \(\left(x-2y+5\right)^2\ge0\forall x;y\)

       \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow B\ge1\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy  \(B_{Min}=1\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)

25 tháng 9 2023

\(C=-\left(x^2+4x+4\right)-\left(y^2-8y+16\right)+22\\ =-\left(x^2+2x.2+2^2\right)-\left(y^2-2.y.4+4^2\right)+22\\ =-\left(x+2\right)^2-\left(y-4\right)^2+22\\ Vậy:max_C=22.khi.x=-2.và.y=4\)

18 tháng 9 2019

\(B=\left(2x-y\right)^2+y^2+1\ge1\)

Đẳng thức xảy r akhi \(x=y=0\)

Sai chỗ nào hay không thì tự check;)) chắc ko sai đâu, đừng lo:v

Có link câu này bạn tham khảo xem có được không nhé

https://h.vn/hoi-dap/question/535151.html

Học tốt nhé!