cho hbh abcd điểm E thuộc AC, HADE cắT HACB tại F. Chứng minh tam giác AED đồng dạng tam giác BEF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án:
a) △ABC∽△HAC△ABC∽△HAC
b) EC.AC=DC.BCEC.AC=DC.BC
c) △BEC∽△ADC△BEC∽△ADC, △ABE△ABE vuông cân tại A
Giải thích các bước giải:
a)
Xét △ABC△ABC và △HAC△HAC:
ˆBAC=ˆAHC(=90o)BAC^=AHC^(=90o)
ˆCC^: chung
→△ABC∽△HAC→△ABC∽△HAC (g.g)
b)
Xét △DEC△DEC và △ABC△ABC:
ˆEDC=ˆBAC(=90o)EDC^=BAC^(=90o)
ˆCC^: chung
→△DEC∽△ABC→△DEC∽△ABC (g.g)
→DCEC=ACBC→EC.AC=DC.BC→DCEC=ACBC→EC.AC=DC.BC
c)
Xét △BEC△BEC và △ADC△ADC:
DCEC=ACBCDCEC=ACBC (cmt)
ˆCC^: chung
→△BEC∽△ADC→△BEC∽△ADC (c.g.c)
Ta có: AH⊥BC,ED⊥BCAH⊥BC,ED⊥BC (gt)
→AH//ED→AH//ED
△AHC△AHC có AH//EDAH//ED (cmt)
→AEAC=HDHC→AEAC=HDHC (định lý Talet)
Mà HD=HAHD=HA (gt)
→AEAC=HAHC→AEAC=HAHC
Lại có: △ABC∽△HAC△ABC∽△HAC (cmt)
→ABAC=HAHC→ABAC=HAHC
→AEAC=ABAC→AE=AB→AEAC=ABAC→AE=AB
→△ABE→△ABE cân tại A
Có: AB⊥AE(AB⊥AC)AB⊥AE(AB⊥AC)
→△ABE→△ABE vuông cân tại A
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
Do đó: ΔABC\(\sim\)ΔHAC
b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc C chung
DO đó: ΔCDE\(\sim\)ΔCAB
Suy ra: CD/CA=CE/CB
hay \(CD\cdot CB=CA\cdot CE\)
a)
Ta có: AE/AB = 6/18 = 1/3
AD/AC = (18:2)/27 = 9/27 = 1/3
Xét ∆AED và ∆ABC có:
Chung góc BAC
AD/AC = AE/AB( = 1/3 )
Suy ra : ∆AED đồng dạng với∆ABC ( đpcm )
b)
Do hai tam giác trên đông dang nên ED/BC = AE/AB = AD/AC
Suy ra ED/BC = 1/3
Suy ra ED/30 = 1/3
Suy ra ED= 10cm
a. Xét \(2\Delta:\Delta AEF\) và \(\Delta DCF\) có:
\(\left\{{}\begin{matrix}\widehat{EAF}=\widehat{FDC}=90^o\left(gt\right)\\\widehat{EFA}=\widehat{CFD}\left(đối.đỉnh\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AEF\sim\Delta DCF\left(g-g\right)\)
b. Xét \(2\Delta:\Delta AEF\) và \(\Delta ABC\) có:
\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{AEF}=90^o\left(gt\right)\\\widehat{AEF}=\widehat{ACB}\left(2.góc.tương.ứng\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AEF\sim\Delta ABC\left(g-g\right)\)
\(\Rightarrow\dfrac{AE}{EF}=\dfrac{AC}{BC}\Leftrightarrow AE.BC=EF.AC\)
a: \(\widehat{EBC}=\dfrac{\widehat{ABC}}{2}\)
\(\widehat{DCB}=\dfrac{\widehat{ACB}}{2}\)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{EBC}=\widehat{DCB}\)
Xét ΔDBC và ΔECB có
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
\(\widehat{DCB}=\widehat{EBC}\)
Do đo: ΔDBC=ΔECB
b: Xét ΔBEF có \(\widehat{EBF}=\widehat{EFB}\left(=\widehat{DCB}\right)\)
nên ΔBEF cân tại E
a: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có
góc EHB=góc DHC
=>ΔHEB đồng dạng với ΔHDC
b: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AB*AE; AD/AB=AE/AC
c: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc A chung
=>ΔADE đồng dạng với ΔABC
=>góc AED=góc ACB
Bạn ghi lại đề nhé
ĐỀ này bạn viết lại đi