Tìm n thuộc N* để \(n^4-n+2\) là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xét : n = 1 1! = 12
n = 2 1! +2! = 3
n=3 1! + 2! + 3! = 9 =32
n = 4 1!+ 2! +3! + 4! =33
Với n >4 thì n! = 1.2.3.........n là mội số chẳn .Nên 1!+2!+......+n! =33 cộng với một số chẳn bằng sốcó chữ số tận cùng của tổng đó là chữ số 3 .Nên nó không phải là số chính phương.
Vậy chỉ có hai giá trị n=1 hoặc n=3 thì 1! +2! + 3! +4! +.......+n!là số chính phương.
Ta có: \(n^4+n^3+n^2=n^2\left(n^2+n+1\right)\)
Theo đề ra thì \(n^2\left(n^2+n+1\right)\) mà \(n^2\)là một số chính phương \(\Rightarrow n^2+n+1\)là 1 số chính phương.
Gọi \(n^2+n+1=k^2\) =>\(4n^2+4n+1+3\)= \(4k^2\)
=> \(\left(2n+1\right)^2+3=4k^2\) => \(\left(2k-2n-1\right)\left(2k+2n+1\right)=3\)
\(\Leftrightarrow2k-2n-1;2k+2n+1\inƯ\left(3\right)=\left\{3;1;-3;-1\right\}\)Và \(2k-2n-1;2k+2n+1\)phải đồng âm hoặc đồng dương,
Ta có bảng sau:
\(2k-2n-1\) | 1 | 3 | -1 | -3 |
\(2k+2n+1\) | 3 | 1 | -3 | -1 |
\(2k-2n\) | 2 | 4 | 0 | -2 |
\(2k+2n\) | 2 | 0 | -4 | -2 |
\(n\) | 0 | -1 | -1 | 0 |
Vậy n thỏa mãn đề bài là n=0 hoặc n=-1
Đặt \(n^4+n^3+n^2=a^2\left(a\in N\right)\)
Ta có : \(n^4-2n^3+n^2< a^2< n^4+2n^3+n^2\)
\(\Leftrightarrow\left(n^2-n\right)^2< a^2< \left(n^2+n\right)^2\)\(\Rightarrow n^2-n< a< n^2+n\)
Mặt khác, ta lại có : \(n^2-n< n^2< n^2+n\) \(\Rightarrow a=n^2\Leftrightarrow a^2=n^4\)
\(\Leftrightarrow n^4+n^3+n^2=n^4\Leftrightarrow n^2\left(n+1\right)=0\Leftrightarrow\orbr{\begin{cases}n=0\left(\text{nhận}\right)\\n=-1\left(\text{loại}\right)\end{cases}}\)
Vậy n = 0 thoả mãn đề bài.
Bài 1: Gọi ước chung lớn nhất của n + 1 và 7n + 4 là d
Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}7n+7⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ 7n+ 7 - 7n - 4 ⋮ d
⇒ (7n - 7n) + (7 - 4) ⋮ d ⇒0 + 3 ⋮ d ⇒ 3 ⋮ d ⇒ d \(\in\) Ư(3) = {1; 3}
Nếu n = 3 thì n + 1 ⋮ 3 ⇒ n = 3k - 1 khi đó hai số sẽ không nguyên tố cùng nhau.
Vậy để hai số nguyên tố cùng nhau thì n \(\ne\) 3k - 1
Kết luận: n \(\ne\) 3k - 1