giải ptrinh bằng pt thế ạ
0.5x-1.5y=1
-x+3y=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Thay \(x=\sqrt{2};y=2\sqrt{2}\) vào đồ thị hàm số \(y=ax^2\) ta có:
\(\left(\sqrt{2}\right)^2.a=2\sqrt{2}\Leftrightarrow2a=2\sqrt{2}\Leftrightarrow a=\sqrt{2}\)
Vậy \(a=\sqrt{2}\) thì đồ thị hàm số \(y=ax^2\) đi qua điểm \(\left(\sqrt{2};2\sqrt{2}\right)\)
b) \(\left\{{}\begin{matrix}2x+3y=-1\\x-2y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2.\left(3+2y\right)+3y=-1\\x=3+2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7y=-7\\x=3+2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=3+2.\left(-1\right)=1\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm duy nhất là \(\left(1;-1\right)\)
\(\left\{{}\begin{matrix}x+3y=-4\\5x-8y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-4-3y\\5\left(-4-3y\right)-8y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-4-3y\\-20-15y-8y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-4-3y\\-20-23y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-4-3\left(-1\right)\\y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=2y\\4x-3y=-25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2y\\8y-3y=-25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-10\\y=-5\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x-2y=a\\\dfrac{1}{2x+3y}=b\end{matrix}\right.\)
hpt trở thành:
\(\left\{{}\begin{matrix}a+b=2\\2a+3b=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=3\\\dfrac{1}{2x+3y}=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2x+3y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2\left(3+2y\right)+3y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\6+4y+3y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\7y=-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2.-1\\y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Vậy nghiệm hpt \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Gọi cạnh lớn hơn trong hai cạnh còn lại là a (a > 2)
Cạnh bé hơn trong hai cạnh còn lại là b (b > 0)
Tổng hai cạnh còn lại này là \(48-20=28\left(cm\right)\)
Theo đề bài, ta có hệ phương trình:
\(\hept{\begin{cases}a+b=28\\a-b=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=15\\b=13\end{cases}}\)
Vậy độ dài hai cạnh còn lại lần lượt dài \(15cm\) và \(13cm\)
\(\left\{{}\begin{matrix}0,5x-1,5y=1\\-x+3y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-3y=2\\-x+3y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\-\left(3y+2\right)+3y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\-3y-2+3y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\-2=2\end{matrix}\right.\)
=> Hpt vô nghiệm
0,5x - 1,5y = 1 (1)
-x + 3y = 2 (2)
Từ (2) ta có:
x = 3y - 2 (3)
Thế (3) vào (1), ta có:
0,5(3y - 2) - 1,5y = 1
1,5y - 1 - 1,5y = 1
0y = 1 + 1
0y = 2 (vô lý)
Vậy