K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(7A=\dfrac{7^{2022}+14}{7^{2022}+2}=1+\dfrac{12}{7^{2022}+2}\)

\(7B=\dfrac{7^{2024}+14}{7^{2024}+2}=1+\dfrac{12}{7^{2024}+2}\)

\(7^{2022}+2< 7^{2024}+2\)

=>\(\dfrac{12}{7^{2022}+2}>\dfrac{12}{7^{2024}+2}\)

=>\(\dfrac{12}{7^{2022}+2}+1>\dfrac{12}{7^{2024}+2}+1\)

=>7A>7B

=>A>B

AH
Akai Haruma
Giáo viên
29 tháng 6

Đề lỗi hiển thị. Bạn xem lại nhé.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

a) Vì 1,25 < 2,3 nên -1,25 > -2,3 hay a > b

\(\begin{array}{l}\left| a \right| = \left| { - 1,25} \right| = 1,25;\\\left| b \right| = \left| { - 2,3} \right| = 2,3\end{array}\)

Vì 1,25 < 2,3 nên \(\left| a \right| < \left| b \right|\).

b) Ta có -12,7  và -7,12 là các số âm, |-12,7|=12,7; |-7,12|=7,12 

Vì 12,7 > 7,12 nên |-12,7| > |-7,12|

Vậy  -12,7 < -7,12.

a: \(\sqrt{a^2}=\left|a\right|\)

\(\sqrt[3]{a^3}=a\)

b: \(\sqrt{a\cdot b}=\sqrt{a}\cdot\sqrt{b}\)

a) ta có:  \(1-\frac{2012}{2013}=\frac{1}{2013}\)

                 \(1-\frac{2013}{2014}=\frac{1}{2014}\)

mà \(\frac{1}{2013}>\frac{1}{2014}\) nên   \(\frac{2013}{2014}>\frac{2012}{2013}\)

3 tháng 4 2022

sao giống lớp 4 thế ta

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a) Khi a, b là hai số dương:

|a| = a; |b| = b

Khi đó, |a| < |b| , tức là a < b

Vậy a < b

b) Khi a, b là hai số âm:

|a| = - a; |b| = - b

Khi đó, |a| < |b| , tức là - a < - b hay a > b

Vậy a > b

a: |a|<|b|

mà a,b dương

nên a<b

b: a,b là hai số âm

|a|<|b|

Do đó: a>b

17 tháng 2 2022

1.a) 3/4 > 5/10

   b) 35/25 > 16/14

2.a) 7/5 > 5/7

  b) 14/16 < 24/21

HT nha

( bạn t.i.c.k cho mik nha, mik cảm ơn )

12 tháng 4 2023

Tyyyyn

 

28 tháng 10 2017

Ta có: x > 2 ⇔ (a – b)x < 2(a – b)

⇒ a – b < 0 ⇔ a < b

30 tháng 8 2017

Ta có: x < 5 ⇔ (a – b)x < 5(a – b)

⇒ a – b > 0 ⇔ a > b

1: 

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{180}{9}=20\)

Do đó: a=40; b=60; c=80

Xét ΔABC có \(\widehat{A}< \widehat{B}< \widehat{C}\)

nen BC<AC<AB

2: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{4}}=\dfrac{b+c}{\dfrac{1}{3}+\dfrac{1}{4}}=\dfrac{70}{\dfrac{7}{12}}=120\)

Do đó: b=40; c=30

Xét ΔABC có \(\widehat{A}>\widehat{B}>\widehat{C}\)

nên BC>AC>AB

29 tháng 8 2015

bằng nhau                               

29 tháng 8 2015

Ta có: \(\frac{a}{b}=\frac{a.\left(b+1\right)}{b.\left(b+1\right)}=\frac{ab+a}{b.\left(b+1\right)}\)

          \(\frac{a+1}{b+1}=\frac{b.\left(a+1\right)}{b.\left(b+1\right)}=\frac{ab+b}{b.\left(b+1\right)}\)

Xét a>b

=>\(\frac{ab+a}{b.\left(b+1\right)}>\frac{ab+b}{b.\left(b+1\right)}\)

=>\(\frac{a}{b}>\frac{a+1}{b+1}\)

Xét a<b

=>\(\frac{ab+a}{b.\left(b+1\right)}