Cho tam giác ABC vuông tại A có C 60 . Tia phân giác góc C cắt AB tại E. Kẻ EK vuông góc với BC tại K. a) Chứng minh rằng ACE KCE và AK CE . b) Chứng minh K là trung điểm của BC .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
góc CAE=góc KAE
=>ΔACE=ΔAKE
b: Xét ΔEAB có góc EAB=góc EBA
nên ΔEAB cân tại E
=>EA=EB
Xét ΔECA vuông tại C và ΔEDB vuông tại D có
EA=EB
góc AEC=góc BED
=>ΔECA=ΔEDB
=>EC=ED
=>AD=BC
a: BC=căn 13^2-5^2=12cm
Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
góc CAE=góc KAE
=>ΔACE=ΔAKE
b: CE=KE
KE<EB
=>CE<EB
c: góc BCK+góc ACK=90 độ
góc HCK+góc AKC=90 độ
mà góc ACK=góc AKC
nên góc BCK=góc HCK
=>CK là phân giác của góc HCB
Lời giải:
a) Xét tam giác AKB và AKC có:
AB=AC (giả thiết)
KB=KC (do K là trung điểm của BC)
AK chung
Do đó: \(\triangle AKB=\triangle AKC(c.c.c)\) (đpcm)
\(\Rightarrow \widehat{AKB}=\widehat{AKC}\). Mà \(\widehat{AKB}+\widehat{AKC}=\widehat{BKC}=180^0\). Do đó:
\(\widehat{AKB}=\widehat{AKC}=90^0\Rightarrow AK\perp BC\) (đpcm)
b)
Ta thấy: \(EC\perp BC; AK\perp BC\) (đã cm ở phần a)
\(\Rightarrow EC\parallel AK\) (đpcm)
c) Vì tam giác ABC là tam giác vuông cân tại A nên \(\widehat{B}=45^0\)
Tam giác CBE vuông tại C có \(\widehat{B}=45^0\) \(\Rightarrow \widehat{E}=180^0-(\widehat{C}+\widehat{B})=180^0-(90^0+45^0)=45^0\)
\(\Rightarrow \widehat{E}=\widehat{B}\) nên tam giác CBE cân tại C. Do đó CE=CB (đpcm)
a: Xét ΔACE vuông tại C và ΔAKE vuông tạiK có
AE chung
góc CAE=góc KAE
=>ΔACE=ΔAKE
=>AC=AK và EC=EK
=>AE là trung trực của CK
b: Xét ΔABC vuông tại A có cosA=AC/AB
=>AC/AB=1/2
=>AB=2AC
Xét ΔEAB có góc EAB=góc EBA
nên ΔEAB cân tại E
=>EA=EB>AC
Lời giải:
a) Xét tam giác AKB và AKC có:
AB=AC (giả thiết)
KB=KC (do K là trung điểm của BC)
AK chung
Do đó: (đpcm)
. Mà . Do đó:
(đpcm)
b)
Ta thấy: (đã cm ở phần a)
(đpcm)
c) Vì tam giác ABC là tam giác vuông cân tại A nên
Tam giác CBE vuông tại C có
nên tam giác CBE cân tại C. Do đó CE=CB (đpcm)
d mình ko biết
Sửa đề: \(\widehat{A}=60^0\)
a) Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)(AE là tia phân giác của \(\widehat{CAK}\))
Do đó: ΔACE=ΔAKE(cạnh huyền-góc nhọn)
b) Ta có: ΔABC vuông tại C(gt)
nên \(\widehat{CAB}+\widehat{CBA}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{EBA}+60^0=90^0\)
\(\Leftrightarrow\widehat{EBA}=30^0\)(1)
Ta có: AE là tia phân giác của \(\widehat{CAB}\)(gt)
nên \(\widehat{EAB}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^0}{2}=30^0\)(2)
Từ (1) và (2) suy ra \(\widehat{EBA}=\widehat{EAB}\)
Xét ΔEAB có \(\widehat{EBA}=\widehat{EAB}\)(cmt)
nên ΔEAB cân tại E(Định lí đảo của tam giác cân)