Có: M = 1/1000 + 1/1002 + 1/1004 + ... + 1/1998 + 1/2000
Chứng minh rằng M < 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn so sánh 1/1000 với 1/2000, ...... với 1/2000
bạn thấy 1/2000 đều nhỏ hơn các số kia
1/2000 =1/2000
ta có 1/2000+1/2000+1/2000+......+1/2000 [có tất cả là 1001 số 1/2000]
vì [2000-1000]:1 +1=1001
ta lấy 1/2000 nhân với 1001= 1001/2000
vậy 1001/2000 nhỏ hơn 1/2
có tất cả số số hạng là
(1005-1)/1+1=1005 (số)
tổng của tất cả số hạng đó là
(1+1005)*1005/2=505515
đáp số 505515
\(M=\dfrac{1}{1000}+\dfrac{1}{1002}+\dfrac{1}{1004}+...+\dfrac{1}{2000}\)
\(2M=\dfrac{1}{500}+\dfrac{1}{501}+\dfrac{1}{502}+...+\dfrac{1}{1000}\)
\(2M< \dfrac{1}{500}+\dfrac{1}{500}+\dfrac{1}{500}+...+\dfrac{1}{500}=\dfrac{500}{500}=1\)
\(M< \dfrac{1}{2}\)