K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2018

Ta có:

\(A\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_2x^2+a_1x+a_0\)

\(A\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\)

=>A(1) là tổng các hệ số

Áp dụng:

 \(f\left(1\right)=\left(1^2+2.1+1\right)^{30}\)

\(f\left(1\right)=4^{30}\)

Vậy tổng các hệ số của f(x) là 4

7 tháng 11 2018

cho tui thì tui trả lời

7 tháng 11 2018

??????????????

`a,` 

`Q(x)=` \(\dfrac{1}{2}x+\dfrac{2}{3}x^3-\dfrac{1}{3}x+\dfrac{5}{2}x^2-\dfrac{2}{3}x^3+1\)

`Q(x)=`\(\left(\dfrac{2}{3}x^3-\dfrac{2}{3}x^3\right)+\dfrac{5}{2}x^2+\left(\dfrac{1}{2}x-\dfrac{1}{3}x\right)+1\)

`Q(x)=`\(\dfrac{5}{2}x^2+\dfrac{1}{6}x+1\)

`b,` Bậc của đa thức: `2`

Hệ số cao nhất: `5/2`

Hệ số tự do: `1`

`c,`

`Q(-6)=`\(\dfrac{5}{2}\cdot\left(-6\right)^2+\dfrac{1}{6}\cdot\left(-6\right)+1\)

`= 5/2*36 -1+1 = 90-1+1=90`

`Q(1)= 5/2*1^2+1/6*1+1 = 5/2+1/6+1=8/3+1=11/3`

`Q(2)=5/2*2^2+1/6*2+1=5/2*4+1/3+1=10+1/3+1=31/3+1=34/3`

a: f(x)=-x^5-7x^4-2x^3+x^2+4x+9

g(x)=x^5+7x^4+2x^3+2x^2-3x-9

b: H(x)=-x^5-7x^4-2x^3+x^2+4x+9+x^5+7x^4+2x^3+2x^2-3x-9

=3x^2+x

c: H(x)=0

=>x(3x+1)=0

=>x=0 hoặc x=-1/3

26 tháng 6 2016

1. Công thức tính tổng các hệ số của f(x) là: \(a_n+a_{n-1}+a_{n-2}+...+a_1+a_0\)

2. Công thức tính tổng các hệ số của:

  • Lũy thừa bậc chẵn là: \(a_0+a_2+a_4+a_6+...+a_{2k-2}+a_{2k}\)với k = n/2 khi n chẵn và k = (n-1)/2 với n lẻ.
  • Lũy thừa bậc lẻ là: \(a_1+a_3+a_5+a_7+...+a_{2k-3}+a_{2k-1}\)với k = n/2 khi n chẵn và k = (n+1)/2 với n lẻ.
12 tháng 8 2015

\(1.\text{ }f\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\)

\(2.\)

+Trường hợp 1: n chẵn

\(f\left(-1\right)=a_n-a_{n-1}+...-a_1+a_0\)

\(\Rightarrow a_n+a_{n-2}+...+a_0-\left(a_{n-1}+a_{n-3}+...+a_1\right)=f\left(-1\right)\)

Mà \(\left(a_n+a_{n-2}+...+a_0\right)+\left(a_{n-1}+a_{n-3}+...+a_1\right)=f\left(1\right)\)

Cộng theo vế, ta được \(a_n+a_{n-2}+...+a_0=\frac{f\left(1\right)+f\left(-1\right)}{2}\)

Trừ theo vế, ta được: \(a_{n-1}+a_{n-3}+...+a_1=\frac{f\left(1\right)-f\left(-1\right)}{2}\)

+Trường hợp 2: n lẻ.

Làm tương tự, ta được:

\(a_n+a_{n-2}+...+a_3+a_1=\frac{f\left(1\right)-f\left(-1\right)}{2}\)

\(a_{n-1}+a_{n-3}+...+a_0=\frac{f\left(1\right)+f\left(-1\right)}{2}\)

2 tháng 5 2023

a) Thu gọn và sắp xếp:
\(P\left(x\right)=2x^3-9x^2+5-4x^3+7x\)

\(P\left(x\right)=\left(2x^3-4x^3\right)-\left(9x^2+2x^2\right)+7x+5\)

\(P\left(x\right)=-2x^3-11x^2+7x+5\)

b) Thay x=1 vào đa thức P(x) ta được:

\(P\left(x\right)=\left(-1\right)^4-\left(-1\right)^3-\left(-1\right)-2=1\)