K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AM=6-2=6cm

AN=12-3=9cm

=>AM/AB=AN/AC

=>MN//BC

b: Xet ΔAKC có NI//KC

nên NI/KC=AI/AK

Xét ΔABK có MI//BK

nên MI/BK=AI/AK

=>NI/KC=MI/BK

c: NI/KC=MI/BK

KC=KB

=>NI=MI

=>I là tđ của MN

a: Xét ΔABH và ΔACH có 

AB=AC

\(\widehat{BAH}=\widehat{CAH}\)

AH chung

Do đó: ΔABH=ΔACH

b: Ta có: ΔABH=ΔACH

nên HB=HC

c: Xét ΔAMK và ΔCMH có 

MA=MC

\(\widehat{AMK}=\widehat{CMH}\)

MK=MH

Do đó: ΔAMK=ΔCMH

a: Xét ΔABH và ΔACH có

AB=AC

\(\widehat{BAH}=\widehat{CAH}\)

AH chung

Do đó: ΔABH=ΔACH

b: Ta có:ΔABC cân tại A

mà AH là đường phân giác

nên H là trung điểm của BC

hay HB=HC

a: Xét ΔABH và ΔACH có 

AB=AC

AH chung

BH=CH

Do đó: ΔABH=ΔACH

b: Ta có: ΔABC cân tại A

mà AH là tia phân giác

nên H là trung điểm của BC

hay HB=HC

a: Xét ΔABC có AH/AB=AK/AC
nên HK//BC

b: Xet ΔABC có HK//BC

nên AH/AB=HK/BC

=>HK/18=6/9=2/3

=>HK=12(cm)

c: Xét ΔABM có HI//BM

nên HI/BM=AI/AM

Xét ΔAMC có IK//MC

nên IK/MC=AI/AM

=>HI/BM=IK/MC

mà BM=CM

nên HI=IK

=>I là trung điểm của HK

26 tháng 2 2023

vẽ hình nữa

 

1: Xét ΔCIO vuông tại Ivà ΔCHO vuông tại H có

CO chung

góc ICO=góc HCO

=>ΔCIO=ΔCHO

=>CI=CH

=>ΔCIH cân tại C

2:

Kẻ AE//BC, E thuộc IH

=>góc AEH=góc HIC=góc IHC=góc AHE

=>ΔAHE cân tại A

=>AE=AH=IK

Xét ΔAEM và ΔKIM có

góc MAE=góc MIK

AE=IK

góc AME=góc KMI

=>ΔAEM=ΔKIM

=>AM=KM

=>M là trung điểm của AK

c: Kẻ OD vuông góc AB

Xét ΔAOD vuông tại D và ΔAOH vuông tại H có

AO chung

góc OAD=góc OAH

=>ΔAOD=ΔAOH

=>AD=AH=IK

Xet ΔBOD và ΔBOI có

góc BDO=góc BIO

BO chung

góc DBO=góc IBO

=>ΔBDO=ΔBIO

=>BD=BI

BK=BI+IK=BD+AD=BA

=>ΔBKA cân tại B

=>BO vuông góc AK

Xét ΔAHO và ΔOIK có

AH=IK

OH=OI

góc AHO=góc OIK=90 độ

=>ΔAHO=ΔKIO

=>OA=OK

=>ΔOAK cân tại O

mà M là trung điểm của AK

nên OM vuông góc AK

=>B,O,M thẳng hàng

a: Xét ΔABH và ΔKBH có

BA=BK

BH chung

HA=HK

Do đó: ΔBAH=ΔBKH

=>\(\widehat{BHA}=\widehat{BHK}\)

mà \(\widehat{BHA}+\widehat{BHK}=180^0\)(hai góc kề bù)

nên \(\widehat{BHA}=\widehat{BHK}=\dfrac{180^0}{2}=90^0\)

=>BH\(\perp\)AK tại H

=>AK\(\perp\)BI tại H

b: Sửa đề: KA là phân giác của góc IKD

Xét ΔIAK có

IH là đường trung tuyến

IH là đường cao

Do đó: ΔIAK cân tại I

Ta có: DK//AC

=>\(\widehat{DKA}=\widehat{KAI}\)

mà \(\widehat{KAI}=\widehat{IKA}\)(ΔIAK cân tại I)

nên \(\widehat{DKA}=\widehat{IKA}\)

=>KA là phân giác của góc DKI