K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2017

MÌNH BIẾT NHƯNG NHÁC GHI...

16 tháng 10 2017

Mình đã trả lời ở câu hỏi của Nguyễn Quốc Việt:

Http://olm.vn/hoi-dap/question/1063224

Bạn xem đi nha

12 tháng 9 2015

\(C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+......+\left(3^9+3^{10}+3^{11}\right)\)

\(C=13.1+3^3.13+......+3^9.13\)

\(C=13.\left(1+3^3+3^6+3^9\right)\)

Chia hết cho 13

\(C=\left(1+3+3^2+3^3\right)+......+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(C=40.1+40.3^4+40.3^8\)

\(C=40.\left(1+3^4+3^8\right)\)

Chia hết cho 40

15 tháng 3 2018

Cho A = 1-3+3 mũ 2-3 mũ 3+3 mũ 4-3 mũ 5+.....+3 mũ 98-3 mũ 99 chứng to A chia hết cho 20

29 tháng 9 2019

a) Ta có : \(C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)

\(=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+3^9.\left(1+3+3^2\right)\)

\(=13+3^3.13+...+3^9.13\)

\(=13.\left(1+3^3+...+3^9\right)⋮13\)

\(\Rightarrow C⋮13\left(\text{đpcm}\right)\)

b) Ta có : \(C=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(=\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^4\right)+3^8.\left(1+3+3^2+3^3\right)\)

\(=40+3^4.40+3^8.40\)

\(=40.\left(1+3^4+3^8\right)⋮40\)

\(\Rightarrow C⋮40\left(\text{đpcm}\right)\)

NHóm để đặt nhân tử có 13 và 40 nhen :3

\(C=1+3+3^2+.......+3^{11}\)

\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+......+3^9\left(1+3+3^2\right)\)

\(=\left(1+3+3^2\right)\left(1+3^3+.....+3^9\right)\)

\(=13.\left(1+3^3+.....+3^9\right)\)

\(\Rightarrow C⋮13\)

11 tháng 7 2017

C =( 1 + 3 + 3^2) +( 3^3 + 3^4 + 3^5) + ...... + (3^9 + 3^10 + 3^11 )

C = 13.1 + 3^3 .13 + ...... + 3^9 .13

C = 13. (1 + 3^3 + 3^6 + 3^9)

Chia hết cho 13

C = (1 + 3 + 3^2 + 3^3) + ...... + (3^8 + 3^9 + 3^10 + 3^11)

C = 40.1 + 40.3^4 + 40.3^8

C = 40. (1 + 3^4 + 3^8 )

Chia hết cho 40

Vậy......

4 tháng 12 2017

a) C=\(\left(1+3+3^2\right)+....+\left(3^9+3^{10}+3^{11}\right)\)

=13+.....+3^11 chia het cho 13

nen C=1+3+...+3^11 chia het cho 13

4 tháng 12 2017

C=\(\left(1+3+3^2+3^3\right)+.....+\left(3^8+3^9+3^{10}+3^{11}\right)\)=40+....+\(\left(3^8+3^9+3^{10}+3^{11}\right)\)\(⋮\)40

nên C=\(1+3+3^2+....+3^{11}⋮40\)

10 tháng 10 2017

Ta có : \(3C=3+3^2+3^3+......+3^{12}\)
\(\Rightarrow3C-C=\left(3+3^2+3^3+....+3^{12}\right)-\left(1+3+3^2+3^3+...+3^{11}\right)=3^{12}-1=531440\)
 \(hoặc\)\(2C=531140\Rightarrow C=265720\)chia hết cho 13 và 40

13 tháng 10 2018

b, \(C=1+3+3^2+3^3+...+3^{11}\)

      \(=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)

       \(=\left(1+3+9+27\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

        \(=40+...+3^8.40\)

         \(=40.\left(1+...+3^8\right)⋮40\)

\(\Rightarrow\) \(C⋮40\)

5 tháng 9 2015

Ta có : 3C = 3 + 3^2 + 3^3 + ...3^12
=> 3C - C = (3 + 3^2 + 3^3 + ...3^12) - (1+3+3^2+3^3+....+3^11) = 3^12 - 1 = 531440
hay 2C = 531440 => C = 53144 :2 = 265720

265720 = 20440.13 => C chia hết cho 13 ( vì có thừa số 13)

265720 = 6643.40 => C chia hết cho 40 ( vì có thừa số 40)