K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6

a) xét tam giác ADE, có: 

AE = AD (gt)

=> tam giác ADE là tam giác cân

lại có góc A = 60 độ

=> tam giác cân ADE là tam giác đều

b) vì tam giác ADE là tam giác đều

=> AD = AE = ED (1)

lại có AD = CD (D là trung điểm AC) (2)

từ (1) (2) => ED = CD

=> tam giác DEC là tam giác cân

c) vì tam giác ADE là tam giác đều => \(\widehat{A}=\widehat{AED}=\widehat{ADE}=60^0\)

số đo của góc EDC là: EDC = ADC - ADE = 180 - 60 = 120

mà EDC là tam giác cân => góc DEC = góc DCE

ta có: DEC  + DCE = EDC

DEC  + DCE = 120

2DEC = 120

=> DEC = 60

mà AED + DEC = 120

=> CE không vuông góc với AB

29 tháng 1 2022

trẻ trâu

Bạn cần đi bệnh viện hong:)?

2 tháng 5 2017

bạn nào giúp mk vẽ hình đc không

27 tháng 2 2020

Xét ΔADE và ΔABC có :
AD = AB (gt)

góc DAE =góc BAC = 90 độ
AE = AC (gt)
Do đó : ΔADE = ΔABC(c − g − c)
⇒ DE = BC ( hai cạnh tương ứng )
b.
Ta có :
góc ADE =góc CDN ( hai góc đối đỉnh )
góc C= góc E
( vì ΔADE = ΔABC )
⇒ góc N = góc A 90đọ
Hay DE ⊥ BC
Vậy DE ⊥ BC

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

b: Xét ΔAMD và ΔANB có

AM=AN

MD=NB

AD=AB

Do đó: ΔAMD=ΔANB

a: Xét ΔABE và ΔADE có 

AB=AD
\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

b: Ta có: ΔABE=ΔADE

nên EB=ED

hay ΔEBD cân tại E

24 tháng 2 2017

Hình bạn tự vẽ nhé 

a) Vì AE=AD nên tam giác ADE cân tại A ; mà A=60 độ . Vậy tam giác ADE là tam giác đều

b) Tam giác ADE là tam giác đều =>  AD=DE ; mà AD=DC ( D là trung điểm AC)=> DE=DC=> tam giác DEC cân tại D

c) ADB+BDC=180 độ (kề bù)=>BDC=180-ADB=180-60=120

= DBC=DCB=\(\frac{180-120}{2}\)=30

AEC=ABD+DBC=60+30=90 .Vậy CE vuông góc AB

       K mình nhé bạn. Chúc bạn học tốt

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

28 tháng 7 2017

tuwj vex hinhf nha 

1 a. xét tam giác abc có

góc  a + góc b + góc  c = 180 độ

t/s vào tính đc góc  b + góc  c= 120 độ 

góc acb = 120 độ : ( 2+1).1=40 độ 

b) xét tam giác abc có 

góc  a + góc b + góc  c = 180 độ

t/s vào tính đc góc abc = 80 độ

có bi là tia phân giác của góc abc 

=> góc abi = góc ibc = 80 độ :2=40 độ

có ci là tia phân giác của góc acb 

=> góc aci = gócicb = 40 độ : 2 = 20 độ 

xét tam giác ibc có 

góc bic + góc ibc + bci = 180độ 

thay số vào tính đc góc bic = 120 đọ( nghĩ z chứ chưa tính kĩ nha ) 

28 tháng 7 2017

2.

có ae=ad 

=> tam giác ade cân tại e      (1)

lại có góc a = 60 độ     (2) 

(1)(2)=> tam giác ade là tam giác đều 

b) có d là trung điểm của ac

=> ad=cd        (1)

lại có ed=ad ( tam giác ade là tam giác đều )(2) 

(1)(2)=> cd=ed 

=> tam giác dec cân tại d 

c)