Cho ABC, D là trung điểm cạnh BC. Trên tia đối của tia DA lấy điểm E sao cho DE = DA. Chứng minh rằng: a) ADB = EDC. b) AB//CE. c) ABE = ECA
mik đang gấp!làm ơn trả lời nhanh giúp mik!( mik cảm ơn nhiều)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )
Xét tam giác ABD và tam giác DCE có
AD=ED(gt)
BD=CD(vì D là trung điểm của BC)
ADB=EDC(đối đỉnh)
=> tam giác ADB= tam giác EDC
b )
Khi tam giác ADB=tam giác EDC chứng minh trên
=> góc ABD= góc ECD
=> AB // CE(góc so le trong)
c )
Xét tam giác ABC và tam giác ACE có
AE cạnh chung
góc BAE= góc CEA (so le trong )
góc BEA= góc EAC (so le trong)
=> tam giác ABE= tam giác ECA
=> góc ABE= góc ECA
Vì AC song song BE(cm qua tam giac ADC và EDB), AB song song CE(cm qua tam giac ADB và EDC)
Ta có: AC=BE,AB=CE(tính chất đoạn chắn)
sau đó xét tam giác AEC và AEB(c.c.c) là được
Chúc bạn thành công
thấy hay thì tick cho mình
bai tren mk lam sai
tu 2 tam giac = nhau
goc BAD= DCE
vi chung = o vi tri so le trong
AB ss CE
)CA vuong CE
ca vuong AB
a )
Xét tam giác ABD và tam giác DCE có
AD=ED(gt)
BD=CD(vì D là trung điểm của BC)
ADB=EDC(đối đỉnh)
=> tam giác ADB= tam giác EDC
b )
Khi tam giác ADB=tam giác EDC chứng minh trên
=> góc ABD= góc ECD
=> AB // CE(góc so le trong)
c )
Xét tam giác ABC và tam giác ACE có
AE cạnh chung
góc BAE= góc CEA (so le trong )
góc BEA= góc EAC (so le trong)
=> tam giác ABE= tam giác ECA
=> góc ABE= góc ECA
a ) Xét tam giác ABD và tam giác DCE có AD=ED(gt) BD=CD(vì D là trung điểm của BC) ADB=EDC(đối đỉnh) => tam giác ADB= tam giác EDC b ) Khi tam giác ADB=tam giác EDC chứng minh trên => góc ABD= góc ECD => AB // CE(góc so le trong) c ) Xét tam giác ABC và tam giác ACE có AE cạnh chung góc BAE= góc CEA (so le trong ) góc BEA= góc EAC (so le trong) => tam giác ABE= tam giác ECA => góc ABE= góc ECA tk mình nhé
Ta có hình vẽ:
a/ Xét tam giác ABD và tam giác CED có:
\(\widehat{D_1}\)=\(\widehat{D_2}\) (đối đỉnh)
AD = DE (GT)
BD = DC (GT)
=> tam giác ABD = tam giác CED
=> AB = CE (2 cạnh tương ứng) (đpcm)
b/ Ta có: tam giác ABD = tam giác CED (câu a)
=> \(\widehat{ABD}\)=\(\widehat{DCE}\) (2 góc tương ứng)
Mà góc ABD, góc DCE ở vị trí so le trong
=> AB//CE (đpcm)
Ta có hình vẽ sau:
a) Xét ΔBAD và ΔCED có:
BD = CD (gt)
\(\widehat{ADB}\) = \(\widehat{CDE}\) (đối đỉnh)
DA = DA (gt)
=> ΔBAD = ΔCED (c.g.c)
=> AB = CE (2 góc tương ứng) (đpcm)
b) Vì ΔBAD = ΔCED (ý a)
=> \(\widehat{DBA}\) = \(\widehat{DCE}\) (2 góc tương ứng)
mà 2 góc này lại ở vị trí so le trong nên
=> AB // CE (đpcm)
Bạn tự vẽ hình nha
AM = MC (M là trung điểm của của AC)
=> EM là trung tuyến của tam giác ACE (1)
DA = DE (gt)
=> CN là trung tuyến của tam giác ACE (2)
Từ (1) và (2) => N là trọng tâm của tam giác ACE
=> CN = \(\frac{2}{3}\) CD = \(\frac{2}{3}.\frac{1}{2}BC=\frac{1}{3}BC\) (D là trung điểm của BC => CD = BD = \(\frac{1}{2}BC\)
=> BC = 3CN
Chúc bạn học tốt
Mk chỉ làm câu c thôi nha:
Nối C với E ta có
Xét tam giác ACE ta có:
EM là đường trung tuyến [vì MA=MC(gt)]
CD là đường trung tuyến [vì DA=DE(gt)]
\(\Rightarrow\)ND=1/3DC(Mà DC=BD)
\(\Rightarrow\)ND=1/3.BC/2
\(\Rightarrow\)ND=BC/6
\(\Rightarrow\)BC=6.ND(Mà ND=1/3 DC)
\(\Rightarrow\)BC=6.NC/2
\(\Rightarrow\)BC=3NC(đpcm)
a, Xét tam giác ADB và tam giác EDC ta có
^ADB = ^EDC ( đối đỉnh )
BD = DC (gt) ; AD = DE (gt)
=> tam giác ADB = tam giác EDC ( c.g.c )
b, Ta có tam giác ADB = tam giác EDC (cmt)
=> ^BAD = ^DEC
mà 2 góc này ở vị trí so le trong
=> AB // CE
c, Xét tam giác ABE và tam giác ECA có
^BEA = ^EAC ( so le trong )
^BAE = ^AEC ( so le trong )
AE_chung
Vậy tam giác ABE = tam giác ECA (g.c.g)