Tìm a € Z để P€ Z biết P= a-1/a+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|x+1\right|-\left|y-2\right|+\left|z+5\right|\le0\)
Đánh giá: \(\left|x+1\right|\ge0;\) \(\left|y-2\right|\ge0;\) \(\left|z+5\right|\ge0\)
\(\Rightarrow\)\(\left|x+1\right|-\left|y-2\right|+\left|z+5\right|\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\y-2=0\\z+5=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-1\\y=2\\z=-5\end{cases}}\)
Vậy....
b) \(A=-\left|x+1\right|-\left|y-2\right|-\left|z\right|+2017\)
Đánh giá: \(-\left|x+1\right|\le0;\) \(-\left|y-2\right|\le0;\) \(-\left|z\right|\le0\)
\(\Rightarrow\)\(-\left|x+1\right|-\left|y-2\right|-\left|z\right|\le0\)
\(\Rightarrow\)\(-\left|x+1\right|-\left|y-2\right|-\left|z\right|+2017\le2017\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\y-2=0\\z=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-1\\y=2\\z=0\end{cases}}\)
Vậy MAX \(A=2017\) \(\Leftrightarrow\)\(x=-1;\)\(y=2;\)\(z=0\)
a, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A thuộc Z <=> n - 2 thuộc Ư(5) = {1;-1;5;-5}
Ta có: n - 2 = 1 => n = 3
n - 2 = -1 => n = 1
n - 2 = 5 => n = 7
n - 2 = -5 => n = -3
Vậy n = {3;1;7;-3}
b, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A đạt giá trị nhỏ nhất <=> \(\frac{5}{n-2}\) đạt giá trị nhỏ nhất
=> n - 2 đạt giá trị lớn nhất (n - 2 \(\ne\)0 ; n - 2 < 0)
=> n - 2 = -1 => n = 1
Vậy để A có giá trị nhỏ nhất thì n = 1
c, \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A đạt giá trị lớn nhất <=> \(\frac{5}{n-2}\)đạt giá trị lớn nhất
=> n - 2 đạt giá trị nhỏ nhất (n - 2 \(\ne\)0 ; n - 2 > 0)
=> n - 2 = 1 => n = 3
Vậy để A đạt giá trị lớn nhất thì n = 3
1, A chia hết cho n-2
=>2n-3 chia hết cho n-2
=>(2n-4)+1 chia hết cho n-2
=>2(n-2)+1 chia hết cho n-2
Do 2(n-2) chia hết cho n-2
=>1 chia hết cho n-2
mà n thuộc Z =>n-2 thuộc Z => n-2 thuộc {1;-1}=>n thuộc {3;1}
2, 200+199+...+(x+1)+x=200
199+...+(x+1)+x=0(trừ cả 2 vế đi 200)
đặt dãy 199+...+(x+1)+x có n ( số hạng ) với n thuộc N*
Ta có : 199+...+(x+1)+x=0
=>\(\frac{\left(199+x\right).n}{2}=0\)
=>(199+x).n=0
Do n thuộc N*
=>199+x=0
=>x=-199
TICK CHO MÌNH NHÉ !
Tớ nghĩ là cộng vì dấu ''+'' nằm dưới dấu ''='' mà, chắc là quên ấn nút ''Shift'' ấy mà!
a) Để A và n thuộc Z => n+1 chia hết cho n-2
A=(n-2+3) chia hết cho n-2
=> 3 chia hết cho n-2
lập bảng=> n thuộc {3,1,5,9,(-1)}
b) A lớn nhất khi n-2 nhỏ nhất=> n-2=1
=> n=3
Nhớ tk cho mk nha!
Ta có : \(\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)
a) Ta có 1 là số nguyên, để \(\frac{3}{n-2}\) là số nguyên thì 3 chia hết cho n - 2.
<=> n - 2 thuộc Ư(3) = {1;2;-1;-2}
=> n thuộc {3;4;1;0}
b) Để A lớn nhất thì n - 2 = 1 (nếu không có 1 thì những số lớn hơn 1)
=> n - 2 = 1
=> n = 3
Vậy GTLN của n = 3
a) A=\(\frac{n+1}{n-2}=1+\frac{3}{n-2}\)
muốn A nguyên thì n-3=Ư(3)={-1,-3,1,3}
n-2=-1=> n=1
n-2=1=> n=3
n-2=-3=> n=-1
n-2=3=> n=5
=> kl cvos 4 gtri n thỏa:....
b) A=1+\(\frac{3}{n-2}\)
=> muốn A lớn nhất thì \(\frac{3}{n-2}\)lớn nhất
có : \(\frac{3}{n-2}>=3\) khi n nguyên
=> dấu = dảy ra khi n=3
vậy GTLN A=1+3=4 khi x=3
ĐK: \(a\ne-2\); \(a\in\mathbb{Z}\)
\(P=\dfrac{a-1}{a+2}=\dfrac{a+2-3}{a+2}=1-\dfrac{3}{a+2}\)
Để \(P\in\mathbb{Z}\) thì \(\dfrac{3}{a+2}\in\mathbb{Z}\)
\(\Rightarrow3⋮a+2\)
\(\Rightarrow a+2\inƯ\left(3\right)\)
\(\Rightarrow a+2\in\left\{1;3;-1;-3\right\}\)
\(\Rightarrow a\in\left\{-1;1;-3;-5\right\}\) (tmđk)