K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6

ĐK: \(a\ne-2\)\(a\in\mathbb{Z}\)

\(P=\dfrac{a-1}{a+2}=\dfrac{a+2-3}{a+2}=1-\dfrac{3}{a+2}\)

Để \(P\in\mathbb{Z}\) thì \(\dfrac{3}{a+2}\in\mathbb{Z}\)

\(\Rightarrow3⋮a+2\)

\(\Rightarrow a+2\inƯ\left(3\right)\)

\(\Rightarrow a+2\in\left\{1;3;-1;-3\right\}\)

\(\Rightarrow a\in\left\{-1;1;-3;-5\right\}\) (tmđk)

20 tháng 7 2019

2.

8\(^n\): (-2)\(^n\)= 16

=> ( \(\frac{8}{-2}\)\(^n\)= 16

=> ( -4 ) \(^n\)= ( -4 ) \(^2\)

=> n = 2

Vậy n = 2

23 tháng 1 2018

a)     \(\left|x+1\right|-\left|y-2\right|+\left|z+5\right|\le0\)

Đánh giá:   \(\left|x+1\right|\ge0;\)   \(\left|y-2\right|\ge0;\)   \(\left|z+5\right|\ge0\)

\(\Rightarrow\)\(\left|x+1\right|-\left|y-2\right|+\left|z+5\right|\ge0\)

Dấu  "="  xảy ra  \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\y-2=0\\z+5=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-1\\y=2\\z=-5\end{cases}}\)

Vậy....

b)    \(A=-\left|x+1\right|-\left|y-2\right|-\left|z\right|+2017\)

Đánh giá:   \(-\left|x+1\right|\le0;\)  \(-\left|y-2\right|\le0;\)   \(-\left|z\right|\le0\)

\(\Rightarrow\)\(-\left|x+1\right|-\left|y-2\right|-\left|z\right|\le0\)

\(\Rightarrow\)\(-\left|x+1\right|-\left|y-2\right|-\left|z\right|+2017\le2017\)

Dấu  "="  xảy ra  \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\y-2=0\\z=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-1\\y=2\\z=0\end{cases}}\)

Vậy   MAX  \(A=2017\) \(\Leftrightarrow\)\(x=-1;\)\(y=2;\)\(z=0\)

18 tháng 4 2017

UWCLN là ước chung lớn nhất nha các bn

25 tháng 2 2017

a, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)

Để A thuộc Z <=> n - 2 thuộc Ư(5) = {1;-1;5;-5}

Ta có: n - 2 = 1 => n = 3

          n - 2 = -1 => n = 1

          n - 2 = 5 => n = 7

          n - 2 = -5 => n = -3

Vậy n = {3;1;7;-3}

b, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)

Để A đạt giá trị nhỏ nhất <=> \(\frac{5}{n-2}\) đạt giá trị nhỏ nhất

=> n - 2 đạt giá trị lớn nhất  (n - 2 \(\ne\)0 ; n - 2 < 0)

=> n - 2 = -1 => n = 1

Vậy để A có giá trị nhỏ nhất thì n = 1

c, \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)

Để A đạt giá trị lớn nhất <=> \(\frac{5}{n-2}\)đạt giá trị lớn nhất

=> n - 2 đạt giá trị nhỏ nhất (n - 2 \(\ne\)0 ; n - 2 > 0)

=> n - 2 = 1 => n = 3

Vậy để A đạt giá trị lớn nhất thì n = 3

26 tháng 1 2016

1, A chia hết cho n-2 

=>2n-3 chia hết cho n-2 

=>(2n-4)+1 chia hết cho n-2

=>2(n-2)+1 chia hết cho n-2 

Do 2(n-2) chia hết cho n-2 

=>1 chia hết cho n-2 

mà n thuộc Z =>n-2 thuộc Z => n-2 thuộc {1;-1}=>n thuộc {3;1}

2, 200+199+...+(x+1)+x=200 

199+...+(x+1)+x=0(trừ cả 2 vế đi 200)

đặt dãy 199+...+(x+1)+x có n ( số hạng ) với n thuộc N*

Ta có : 199+...+(x+1)+x=0

=>\(\frac{\left(199+x\right).n}{2}=0\)

=>(199+x).n=0

Do n thuộc N*

=>199+x=0

=>x=-199

TICK CHO MÌNH NHÉ !

4 tháng 4 2021

cộng hay trừ vậy

Tớ nghĩ là cộng vì dấu ''+'' nằm dưới dấu ''='' mà, chắc là quên ấn nút ''Shift'' ấy mà!hiha 

6 tháng 4 2017

a) Để A và n thuộc Z => n+1 chia hết cho n-2

A=(n-2+3) chia hết cho n-2

=> 3 chia hết cho n-2

lập bảng=> n thuộc {3,1,5,9,(-1)}

b) A lớn nhất khi n-2 nhỏ nhất=> n-2=1

                                           => n=3

Nhớ tk cho mk nha!

15 tháng 8 2016

Ta có : \(\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)

a) Ta có 1 là số nguyên, để \(\frac{3}{n-2}\) là số nguyên thì 3 chia hết cho n - 2.

<=> n - 2 thuộc Ư(3) = {1;2;-1;-2}

=> n thuộc {3;4;1;0}

b) Để A lớn nhất thì n - 2 = 1 (nếu không có 1 thì những số lớn hơn 1) 

=> n - 2 = 1

=> n = 3

Vậy GTLN của n = 3

15 tháng 8 2016

a) A=\(\frac{n+1}{n-2}=1+\frac{3}{n-2}\)

muốn A nguyên thì n-3=Ư(3)={-1,-3,1,3}

n-2=-1=> n=1

n-2=1=> n=3

n-2=-3=> n=-1

n-2=3=> n=5

=> kl cvos 4 gtri n thỏa:....

b) A=1+\(\frac{3}{n-2}\)

=> muốn A lớn nhất thì \(\frac{3}{n-2}\)lớn nhất

có : \(\frac{3}{n-2}>=3\) khi n nguyên

=> dấu = dảy ra khi n=3

vậy GTLN A=1+3=4 khi x=3