Thực hiện các yêu cầu sau
a)So sánh A và B biết
A=1^2+2^2+3^2+4^2+...+100^2
B=1^3+2^3+4^3+...+50^3
b)Ta có biểu thức: B=3+3^2+3^3+3^4+...+3^100. Tìm số tự nhiên n, biết 2B+3^n= 3^101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
\(1,\\ a,\Leftrightarrow4^{5-x}=4^2\Leftrightarrow5-x=2\Leftrightarrow x=3\\ b,\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\\ c,\Leftrightarrow2x+1=3\Leftrightarrow x=2\\ 2,\\ a,3^{100}=\left(3^2\right)^{50}=9^{50}\\ b,2^{98}=\left(2^2\right)^{49}=4^{49}< 9^{49}\\ c,5^{30}=5^{29}\cdot5< 6\cdot5^{29}\\ d,3^{30}=\left(3^3\right)^{10}=27^{10}>8^{10}\\ 4,\\ a,\Leftrightarrow5\left(x-10\right)=10\\ \Leftrightarrow x-10=2\Leftrightarrow x=12\\ b,\Leftrightarrow3\left(70-x\right)+5=92\\ \Leftrightarrow3\left(70-x\right)=87\\ \Leftrightarrow70-x=29\\ \Leftrightarrow x=41\\ c,\Leftrightarrow16+x-5=315-230=85\\ \Leftrightarrow x=74\\ d,\Leftrightarrow2^x-5+74=707:\left(16-9\right)=707:7=101\\ \Leftrightarrow2^x=32=2^5\\ \Leftrightarrow x=5\)
Bài 1 : Ta có : S = 1 + 2 + 22 + 23 + ... + 29
2S = 2(1 + 2 + 22 + 23 + ... + 29)
2S = 2 + 22 + 23 + ... + 210
2S - S = (2 + 22 + 23 + ... + 210) - (1 + 2 + 22 + 23 + ... + 29)
S = 210 - 1 = 28.4 - 1
Vậy S < 5 x 28
\(3B=3^2+3^3+....+3^{2021}\Rightarrow3B-B=2B=3^{2021}-3\)
2B+3=3^2021=3^n nên: n=2021
\(\text{với: }n\ge7\text{ thì: }2^n\text{ chia hết cho }128\text{ h ta cm:}\)
4+2^2+....+2^6 chia hết cho 128
điều này là hiển nhiên
ý c: ghép cặp có nhiều r
1. Ta có:
3A = 3^2 + 3^3+3^4+...+3^101
=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)
<=> 2A= 3^101-3
=> 2A +3 = 3^101
Mà 2A+3=3^n
=> 3^101 = 3^n => n=101
2. M=3+32+33+34+...+3100
=>3M=32+33+34+35+...+3101
=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé)
=> M=\(\frac{3^{101}-3}{2}\)
a) Ta co : 3101=(34)25 .3=8125.3
Bạn học đồng dư thức rồi thì xem:
Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)
=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8
=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)
Ma M=3101-3 chia hết cho 3 (2)
Từ (1) và (2) => M chia hết cho 12
b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)
=> 3101-3 +3 =3n
=> 3101=3n=> n = 101
A = 12 + 22 + 32 + ... + 1002
A = 1 + 2 x (1 + 1) + 3 x (2 + 1) + ... + 100 x (99 + 1)
A = 1 + 2 x 1 + 2 + 3 x 2 + 3 + ... + 100 x 99 + 100
A = (1 + 2 + 3 + ... + 100) + (1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100)
Ta gọi biểu thức: 1 + 2 + 3 + ... + 100 = C
1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100 = D
C = (1 + 100) x 100 : 2 = 5 050
D = 1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100
3D = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + ... + 99 x 100 x 3
3D = 1 x 2 x 3 + 2 x 3 x (4 - 1) +...+ 99 x 100 x (101 - 98)
3D = 1 x 2 x 3 + 2 x 3 x 4 - 2 x 3 x 1 +... - 99 x 100 x 98
3D = 98 x 99 x 100
3D = 970 200
D = 970 200 : 3
D = 323 400
A = 5 050 + 323 400 = 328 450
B = 13 + 23 + 33 + ... + 503
B = 1 + 2 x ( 22) + 3 x (32) + ... + 50 x (502)
B = 1 + 22 x (1 + 1) + 32 x (2 + 1) + ... + 502 x (49 + 1)
B = 12 + 1 x 22 + 22 + 2 x 32 + 32 + ... + 49 x 502 + 502
B = (12 + 22 + 32 + ... + 502) + (1 x 22 + 2 x 32 + ... + 49 x 502)
Đặt biểu thức: 12 + 22 + 32 + ... + 502 = E
E = 1 + 2 x (1 + 1) + 3 x (2 + 1) + ... + 50 x (49 + 1)
E = 1 + 1 x 2 + 2 + 3 x 2 + 3 + ... + 50 x 49 + 50
E = (1 + 2 + 3 + ... + 50) + (1 x 2 + 2 x 3 + ... + 49 x 50)
Đặt biểu thức: 1 + 2 + 3 + ... + 50 = F
1 x 2 + 2 x 3 + ... + 49 x 50 = G
F = (1 + 50) x 50 : 2 = 1275
3G = 1 x 2 x 3 + 2 x 3 x 3 + ... + 49 x 50 x 3
3G = 1 x 2 x 3 + 2 x 3 x (4 - 1) + ... + 49 x 50 x (51 - 48)
3G = 1 x 2 x 3 + 2 x 3 x 4 - 2 x 3 x 1 + ... + 49 x 50 x 51 - 49 x 50 x 48
3G = 49 x 50 x 51
3G = 124950
G = 124950 : 3 = 41650
B = 41650 + 1275 = 42925
b) B = 3 + 32 + 33 + 34 + ... + 3100
3B = 32 + 33 + 34 + ... + 3101
3B - B = 3101 - 3
2B = 3101 - 3
Ta có:
2B + 3n = 3101
3101 - 3 + 3n = 3101
⇒ 3n = 3
31 = 3
⇒ n = 1
b: \(B=3+3^2+...+3^{100}\)
=>\(3B=3^2+3^3+...+3^{101}\)
=>\(3B-B=3^2+3^3+...+3^{101}-3-3^2-...-3^{100}\)
=>\(2B=3^{101}-3\)
\(2B+3^n=3^{101}\)
=>\(3^{101}-3+3^n=3^{101}\)
=>\(3^n=3\)
=>n=1