Thực hiện phép tính (1+2+3+4+5+6+...+98+99+100) * (1/2+1/4+1/6+1/8) * (1+8+27+64+125+216+343) : 1+4+9+16+25+36+49
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: 8=2^3
2: 25=5^2
3: 4=2^2
4: 49=7^2
5: 81=9^2
6: 36=6^2
7: 100=10^2
8: 121=11^2
9: 144=12^2
10: 169=13^2
11: 27=3^3
12: 125=5^3
13: 1000=10^3
14: 32=2^5
15: 243=3^5
16: 343=7^3
17: 216=6^3
18: 64=4^3
19: 225=15^2
20: 128=2^7
Viết các số sau thành bình phương của 1 số tự nhiên:
1; 4; 9; 16; 25; 36; 49; 64; 81; 100; 121.
1^2; 2^2; 3^2; 4^2; 5^2; 6^2; 7^2; 8^2; 9^2; 10^2; 11^2
Viết mỗi số sau thành lập phương của 1 số tự nhiên:
27; 64; 125; 216; 343
3^3; 4^3; 5^3; 6^3; 7^3
Viết kết quả của phép tính sau dưới dạng 1 lũy thừa:
a,3 mũ 3.3 mũ 4 = 3 ^7
b, 5 mũ 2.5 mũ 9= 5^11
c, 7 mũ 6.7 mũ 3 = 7^9
1. Từ 2 đến 100 có 50 số chẵn: (100 - 1 + 1 ) : 2 = 50
Có 25 cặp số có tổng là 102 = 1 + 100, ....
Tổng số là : (2+ 100) x25 = 2550.
2. Từ 2 đến 99 có 99 số: 99 - 2 + 1 = 98
Có 46 cặp số có kq là: -1 = 2- 3, .....
Vậy kết quả 46. ( -1 ) + 1= - 45
cứ 3 số liên tiếp nhau tạo thành 1 nhóm :
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (\(\dfrac{2}{2}\) + \(\dfrac{3}{3}\) + \(\dfrac{4}{4}\) + \(\dfrac{5}{5}\)+ \(\dfrac{6}{6}+\dfrac{7}{7}+\dfrac{8}{8}\) + \(\dfrac{10}{10}\))
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (1 + 1 +1 + 1+ 1+ 1+ 1 +1)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x 1 x 8
= \(\dfrac{1}{2}\) + \(\)\(\dfrac{1}{2}\) x 8
= \(\dfrac{1}{2}\) + 4
= \(\dfrac{9}{2}\)
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + 8
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{9}{18}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)
= \(\dfrac{1}{2}\) x 10
= 5
a)\(2\sqrt{\dfrac{16}{3}}-3\sqrt{\dfrac{1}{27}}-6\sqrt{\dfrac{4}{75}}\)
\(=2.\sqrt{\dfrac{4^2}{3}}-3.\sqrt{\dfrac{1}{3.3^2}}-6\sqrt{\dfrac{2^2}{3.5^2}}\)
\(=2.\dfrac{4}{\sqrt{3}}-3.\dfrac{1}{3\sqrt{3}}-6.\dfrac{2}{5\sqrt{3}}=\dfrac{8}{\sqrt{3}}-\dfrac{1}{\sqrt{3}}-\dfrac{12}{5\sqrt{3}}\)\(=\dfrac{23}{5\sqrt{3}}=\dfrac{23\sqrt{3}}{15}\)
b)\(\left(6\sqrt{\dfrac{8}{9}}-5\sqrt{\dfrac{32}{25}}+14\sqrt{\dfrac{18}{49}}\right).\sqrt{\dfrac{1}{2}}\)
\(=6\sqrt{\dfrac{8}{9}.\dfrac{1}{2}}-5\sqrt{\dfrac{32}{25}.\dfrac{1}{2}}+14\sqrt{\dfrac{18}{49}.\dfrac{1}{2}}\)
\(=6\sqrt{\dfrac{4}{9}}-5\sqrt{\dfrac{16}{25}}+14\sqrt{\dfrac{9}{49}}\)\(=6.\dfrac{2}{3}-5.\dfrac{4}{5}+14.\dfrac{3}{7}=6\)
c)\(\sqrt{\left(\sqrt{2}-2\right)^2}-\sqrt{6+4\sqrt{2}}=\left|\sqrt{2}-2\right|-\sqrt{4+2.2\sqrt{2}+2}=2-\sqrt{2}-\sqrt{\left(2+\sqrt{2}\right)^2}\)
\(=2-\sqrt{2}-\left(2+\sqrt{2}\right)=-2\sqrt{2}\)
1) \(125^5:25^7\)
\(=\left(5^3\right)^5:\left(5^2\right)^7\)
\(=5^{15}:5^{14}\)
= 5
2) \(27^8:9^9\)
\(=\left(3^3\right)^8:\left(3^2\right)^9\)
\(=3^{24}:3^{18}\)
\(=3^6\)
3) \(36^5:6^8\)
\(=\left(6^2\right)^5:6^8\)
\(=6^{10}:6^8\)
\(=6^2\)
4) \(49^6:7^{10}\)
\(=\left(7^2\right)^6:7^{10}\)
\(=7^{12}:7^{10}=7^2\)
5) \(7^{20}:49^9\)
\(=7^{20}:\left(7^2\right)^9\)
\(=7^{20}:7^{18}=7^2\)
6) \(\frac{1}{2^{10}}:\frac{1}{8^3}\)
\(=\frac{1}{2^{10}}:\frac{1}{\left(2^3\right)^3}\)
\(=\frac{1}{2^{10}}:\frac{1}{2^9}=\frac{1}{2^{10}}.\frac{2^9}{1}=\frac{1}{2}\)
7) \(\left(-\frac{1}{2}\right)^{21}:\frac{1}{4^{10}}\)
\(=\frac{\left(-1\right)^{21}}{2^{21}}:\frac{1}{\left(2^2\right)^{10}}\)
\(=-\frac{1}{2^{21}}:\frac{1}{2^{20}}=-\frac{1}{2^{21}}.\frac{2^{20}}{1}\)
\(=-\frac{1}{2}\)
8) \(\frac{1}{16^5}:\left(-\frac{1}{2}\right)^{18}\)
\(=\frac{1}{\left(2^4\right)^5}:\frac{\left(-1\right)^{18}}{2^{18}}\)
\(=\frac{1}{2^{20}}:\frac{1}{2^{18}}\)
\(=\frac{1}{2^{20}}.\frac{2^{18}}{1}=\frac{1}{4}\)
9) \(\frac{1}{5^{30}}:\frac{1}{25^{14}}\)
\(=\frac{1}{5^{30}}:\frac{1}{\left(5^2\right)^{14}}\)
\(=\frac{1}{5^{30}}:\frac{1}{5^{28}}=\frac{1}{25}\)
\(\left(1+2+3+...+100\right)\cdot\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+\dfrac{1}{8}\right)\cdot\dfrac{\left(1+8+27+64+125+216+343\right)}{1+4+9+16+25+36+49}\)
\(=100\cdot\dfrac{101}{2}\cdot\left(\dfrac{12}{24}+\dfrac{6}{24}+\dfrac{4}{24}+\dfrac{3}{24}\right)\cdot\dfrac{\left(1+2+3+4+5+6+7\right)^2}{140}\)
\(=101\cdot50\cdot\dfrac{25}{24}\cdot\dfrac{784}{140}\)
\(=5050\cdot\dfrac{35}{6}=\dfrac{88375}{3}\)