K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: \(a\ne1\)

Để A là số nguyên thì \(a^3+2⋮a-1\)

=>\(a^3-1+3⋮a-1\)

=>\(3⋮a-1\)

=>\(a-1\in\left\{1;-1;3;-3\right\}\)

=>\(a\in\left\{2;0;4;-2\right\}\)

7 tháng 4 2023

ĐKXĐ : \(x\ne2\)

Ta có HĐT sau (a - b)(a + b) = a2 - ab + ab - b2 = a2 - b2 

Áp dụng vào bài toán ta có:

 x4 + 3 = (x4 - 16) + 19

= [(x2)2 - 42] + 19

= (x2 - 4)(x2 + 4) + 19

= (x - 2)(x + 2)(x2 + 4) + 19

Từ đó \(A=\dfrac{x^2+3}{x-2}=\dfrac{\left(x-2\right).\left(x+2\right).\left(x^2+4\right)+19}{x-2}\)

\(=\left(x+2\right).\left(x^2+4\right)+\dfrac{19}{x-2}\)

Do \(x\inℤ\) nên \(A\inℤ\Leftrightarrow19⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(19\right)=\left\{1;-1;19;-19\right\}\)

hay \(x\in\left\{3;1;21;-17\right\}\)

Câu 1 : (2 điểm) Cho biểu thức           a, Rút gọn biểu thức          b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.Câu 2: (1 điểm)      Tìm tất cả các số tự nhiên có 3 chữ số  sao cho  và Câu 3: (2 điểm)          a. Tìm n để n2 + 2006 là một số chính phương     b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.Câu 4:...
Đọc tiếp

Câu 1 : (2 điểm) Cho biểu thức

          a, Rút gọn biểu thức

          b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.

Câu 2: (1 điểm)

      Tìm tất cả các số tự nhiên có 3 chữ số  sao cho  và

Câu 3: (2 điểm)

          a. Tìm n để n2 + 2006 là một số chính phương

     b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.

Câu 4: (2 điểm)

          a. Cho a, b, n Î N* Hãy so sánh

     b. Cho  A = ;      B =  . So sánh A và B.

Câu 5: (2 điểm)

       Cho 10 số tự nhiên bất kỳ :     a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số  hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.

Câu 6: (1 điểm)

      Cho 2006 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.

 

1

Câu 6:

Số giao điểm là:

\(\dfrac{2006\cdot2005}{2}=2011015\left(điểm\right)\)

20 tháng 2 2020

Bài 2:

a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3

b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3

\(\frac{n+4}{n-3}\)\(\frac{n-3+7}{n-3}\)\(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3

=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}

=> n\(\in\){ 4; 10; 2; -4}

Vậy...

c) Bn thay vào r tính ra

20 tháng 2 2020

la 120

8 tháng 5 2016

A nguyên <=> n-1 là ước của 3

n-11-13-3
n204-2

Vậy n=-2;0;2;4 thì A nguyên

8 tháng 5 2016

Để biểu thức A đạt giá trị nguyên

<=> 3 chia hết cho n-1

Vì 3 chia hết n-1

=> n-1 thuộc Ư(3)={-3;-1;1;3}

Ta có bảng sau:

n-1-3-113
n-2024

Vậy các giá trị nguyên n thỏa mãn là -2;0;2;4

Ai k mik mik k lại. Chúc các bạn thi tốt

24 tháng 7 2021

A=2n−1 là số nguyên khi 2⋮n−1

⇒n−1∈Ư(2)

⇒n−1∈{−2;−1;1;2}

6 tháng 4 2016

Để A là số nguyên 

=> 2 chia hết cho n-1

=> n-1 thuộc U(2)={-1 ; 1 ; -2 ; 2 }

Ta có bẳng :

n-1-1-212
n0-123

Tự đáp số ...

6 tháng 4 2016

Để A là số nguyên thì 2 phải chia hết cho n - 2

mà 2 chia hết cho các số ( 2;-2;1;-1)

Vậy : n - 2 = 2;-2;1;-1 nên n = 2 + 2 = 4

                                      n = ( -2 ) + 2 = 0

                                      n = 1 + 2 = 3

                                      n = ( -1 ) + 2 = 1   

15 tháng 5 2016

\(A=\frac{2}{n-1}\) là số nguyên khi \(2⋮n-1\)

\(\Rightarrow n-1\inƯ\left(2\right)\)

\(\Rightarrow n-1\in\left\{-2;-1;1;2\right\}\)

\(\Rightarrow n\in\left\{-1;0;2;3\right\}\)

Chúc bạn học tốtok

17 tháng 5 2016

để A là số nguyên thì 2 phải chia hết cho n-1 => n -1 thuộc ước của 2

Ư (2) = { 1;-1;2;-2}                                                                                                                                                                                            nếu n-1= 1 =>n =2                                n-1=-1=> n = 0                                                                                                                                    n-1=2 => n=3                                        n-1=-2 => n= -1

vậy n ={ 2;0;3;-1} thì A là số nguyên

20 tháng 2 2021

Câu 1:

a) \(A=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}.\left(\dfrac{x+1}{3x}-x-1\right)\right]:\dfrac{x-1}{x}\)

        \(=\left[\dfrac{2}{3x}-\dfrac{2}{3x}+\dfrac{2x}{x+1}+\dfrac{2}{x+1}\right]\dfrac{x}{x-1}\)

        \(=\left[\dfrac{2x}{x+1}+\dfrac{2}{x+1}\right]\dfrac{x}{x-1}\)

        \(=\dfrac{2x+2}{x+1}.\dfrac{x}{x-1}\)

        \(=\dfrac{2\left(x+1\right)}{x+1}.\dfrac{x}{x-1}\)

        \(=2.\dfrac{x}{x-1}\)

        \(=\dfrac{2x}{x-1}\)

Câu 1: 

ĐKXĐ: \(x\notin\left\{0;-1;1\right\}\)

a) Ta có: \(A=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\left(\dfrac{x+1}{3x}-x-1\right)\right):\dfrac{x-1}{x}\)

\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\left(\dfrac{x+1}{3x}-\dfrac{3x\left(x+1\right)}{3x}\right)\right):\dfrac{x-1}{x}\)

\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right):\dfrac{x-1}{x}\)

\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{-3x^2-2x+1}{3x}\right):\dfrac{x-1}{x}\)

\(=\left(\dfrac{2\left(x+1\right)}{3x\left(x+1\right)}-\dfrac{2\cdot\left(-3x^2-2x+1\right)}{3x\left(x+1\right)}\right):\dfrac{x-1}{x}\)

\(=\dfrac{2x+2+6x^2+4x-2}{3x\left(x+1\right)}:\dfrac{x-1}{x}\)

\(=\dfrac{6x^2+6x}{3x\left(x+1\right)}:\dfrac{x-1}{x}\)

\(=\dfrac{6x\left(x+1\right)}{3x\left(x+1\right)}:\dfrac{x-1}{x}\)

\(=2\cdot\dfrac{x}{x-1}=\dfrac{2x}{x-1}\)

b) Để A nguyên thì \(2x⋮x-1\)

\(\Leftrightarrow2x-2+2⋮x-1\)

mà \(2x-2⋮x-1\)

nên \(2⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(2\right)\)

\(\Leftrightarrow x-1\in\left\{1;-1;2;-2\right\}\)

\(\Leftrightarrow x\in\left\{2;0;3;-1\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;3\right\}\)

Vậy: Để A nguyên thì \(x\in\left\{2;3\right\}\)